GLAC  1.0
json.hpp
Go to the documentation of this file.
1 /*
2  __ _____ _____ _____
3  __| | __| | | | JSON for Modern C++
4 | | |__ | | | | | | version 2.1.1
5 |_____|_____|_____|_|___| https://github.com/nlohmann/json
6 
7 Licensed under the MIT License <http://opensource.org/licenses/MIT>.
8 Copyright (c) 2013-2017 Niels Lohmann <http://nlohmann.me>.
9 
10 Permission is hereby granted, free of charge, to any person obtaining a copy
11 of this software and associated documentation files (the "Software"), to deal
12 in the Software without restriction, including without limitation the rights
13 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 copies of the Software, and to permit persons to whom the Software is
15 furnished to do so, subject to the following conditions:
16 
17 The above copyright notice and this permission notice shall be included in all
18 copies or substantial portions of the Software.
19 
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 SOFTWARE.
27 */
28 
29 #ifndef NLOHMANN_JSON_HPP
30 #define NLOHMANN_JSON_HPP
31 
32 #include <algorithm> // all_of, copy, fill, find, for_each, none_of, remove, reverse, transform
33 #include <array> // array
34 #include <cassert> // assert
35 #include <cctype> // isdigit
36 #include <ciso646> // and, not, or
37 #include <cmath> // isfinite, labs, ldexp, signbit
38 #include <cstddef> // nullptr_t, ptrdiff_t, size_t
39 #include <cstdint> // int64_t, uint64_t
40 #include <cstdlib> // abort, strtod, strtof, strtold, strtoul, strtoll, strtoull
41 #include <cstring> // strlen
42 #include <forward_list> // forward_list
43 #include <functional> // function, hash, less
44 #include <initializer_list> // initializer_list
45 #include <iomanip> // setw
46 #include <iostream> // istream, ostream
47 #include <iterator> // advance, begin, back_inserter, bidirectional_iterator_tag, distance, end, inserter, iterator, iterator_traits, next, random_access_iterator_tag, reverse_iterator
48 #include <limits> // numeric_limits
49 #include <locale> // locale
50 #include <map> // map
51 #include <memory> // addressof, allocator, allocator_traits, unique_ptr
52 #include <numeric> // accumulate
53 #include <sstream> // stringstream
54 #include <stdexcept> // domain_error, invalid_argument, out_of_range
55 #include <string> // getline, stoi, string, to_string
56 #include <type_traits> // add_pointer, conditional, decay, enable_if, false_type, integral_constant, is_arithmetic, is_base_of, is_const, is_constructible, is_convertible, is_default_constructible, is_enum, is_floating_point, is_integral, is_nothrow_move_assignable, is_nothrow_move_constructible, is_pointer, is_reference, is_same, is_scalar, is_signed, remove_const, remove_cv, remove_pointer, remove_reference, true_type, underlying_type
57 #include <utility> // declval, forward, make_pair, move, pair, swap
58 #include <vector> // vector
59 
60 // exclude unsupported compilers
61 #if defined(__clang__)
62  #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
63  #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
64  #endif
65 #elif defined(__GNUC__)
66  #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40900
67  #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
68  #endif
69 #endif
70 
71 // disable float-equal warnings on GCC/clang
72 #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
73  #pragma GCC diagnostic push
74  #pragma GCC diagnostic ignored "-Wfloat-equal"
75 #endif
76 
77 // disable documentation warnings on clang
78 #if defined(__clang__)
79  #pragma GCC diagnostic push
80  #pragma GCC diagnostic ignored "-Wdocumentation"
81 #endif
82 
83 // allow for portable deprecation warnings
84 #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
85  #define JSON_DEPRECATED __attribute__((deprecated))
86 #elif defined(_MSC_VER)
87  #define JSON_DEPRECATED __declspec(deprecated)
88 #else
89  #define JSON_DEPRECATED
90 #endif
91 
92 // allow to disable exceptions
93 #if not defined(JSON_NOEXCEPTION) || defined(__EXCEPTIONS)
94  #define JSON_THROW(exception) throw exception
95  #define JSON_TRY try
96  #define JSON_CATCH(exception) catch(exception)
97 #else
98  #define JSON_THROW(exception) std::abort()
99  #define JSON_TRY if(true)
100  #define JSON_CATCH(exception) if(false)
101 #endif
102 
108 namespace nlohmann
109 {
110 
119 namespace detail
120 {
122 // JSON type enumeration //
124 
149 enum class value_t : uint8_t
150 {
151  null,
152  object,
153  array,
154  string,
155  boolean,
158  number_float,
159  discarded
160 };
161 
171 inline bool operator<(const value_t lhs, const value_t rhs) noexcept
172 {
173  static constexpr std::array<uint8_t, 8> order = {{
174  0, // null
175  3, // object
176  4, // array
177  5, // string
178  1, // boolean
179  2, // integer
180  2, // unsigned
181  2, // float
182  }
183  };
184 
185  // discarded values are not comparable
186  if (lhs == value_t::discarded or rhs == value_t::discarded)
187  {
188  return false;
189  }
190 
191  return order[static_cast<std::size_t>(lhs)] <
192  order[static_cast<std::size_t>(rhs)];
193 }
194 
195 
197 // helpers //
199 
200 // alias templates to reduce boilerplate
201 template<bool B, typename T = void>
202 using enable_if_t = typename std::enable_if<B, T>::type;
203 
204 template<typename T>
205 using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
206 
207 // taken from http://stackoverflow.com/a/26936864/266378
208 template<typename T>
209 using is_unscoped_enum =
210  std::integral_constant<bool, std::is_convertible<T, int>::value and
211  std::is_enum<T>::value>;
212 
213 /*
214 Implementation of two C++17 constructs: conjunction, negation. This is needed
215 to avoid evaluating all the traits in a condition
216 
217 For example: not std::is_same<void, T>::value and has_value_type<T>::value
218 will not compile when T = void (on MSVC at least). Whereas
219 conjunction<negation<std::is_same<void, T>>, has_value_type<T>>::value will
220 stop evaluating if negation<...>::value == false
221 
222 Please note that those constructs must be used with caution, since symbols can
223 become very long quickly (which can slow down compilation and cause MSVC
224 internal compiler errors). Only use it when you have to (see example ahead).
225 */
226 template<class...> struct conjunction : std::true_type {};
227 template<class B1> struct conjunction<B1> : B1 {};
228 template<class B1, class... Bn>
229 struct conjunction<B1, Bn...> : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
230 
231 template<class B> struct negation : std::integral_constant < bool, !B::value > {};
232 
233 // dispatch utility (taken from ranges-v3)
234 template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
235 template<> struct priority_tag<0> {};
236 
237 
239 // constructors //
241 
242 template<value_t> struct external_constructor;
243 
244 template<>
246 {
247  template<typename BasicJsonType>
248  static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
249  {
250  j.m_type = value_t::boolean;
251  j.m_value = b;
252  j.assert_invariant();
253  }
254 };
255 
256 template<>
258 {
259  template<typename BasicJsonType>
260  static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
261  {
262  j.m_type = value_t::string;
263  j.m_value = s;
264  j.assert_invariant();
265  }
266 };
267 
268 template<>
270 {
271  template<typename BasicJsonType>
272  static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
273  {
274  // replace infinity and NAN by null
275  if (not std::isfinite(val))
276  {
277  j = BasicJsonType{};
278  }
279  else
280  {
281  j.m_type = value_t::number_float;
282  j.m_value = val;
283  }
284  j.assert_invariant();
285  }
286 };
287 
288 template<>
290 {
291  template<typename BasicJsonType>
292  static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
293  {
294  j.m_type = value_t::number_unsigned;
295  j.m_value = val;
296  j.assert_invariant();
297  }
298 };
299 
300 template<>
302 {
303  template<typename BasicJsonType>
304  static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
305  {
306  j.m_type = value_t::number_integer;
307  j.m_value = val;
308  j.assert_invariant();
309  }
310 };
311 
312 template<>
314 {
315  template<typename BasicJsonType>
316  static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
317  {
318  j.m_type = value_t::array;
319  j.m_value = arr;
320  j.assert_invariant();
321  }
322 
323  template<typename BasicJsonType, typename CompatibleArrayType,
324  enable_if_t<not std::is_same<CompatibleArrayType,
325  typename BasicJsonType::array_t>::value,
326  int> = 0>
327  static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
328  {
329  using std::begin;
330  using std::end;
331  j.m_type = value_t::array;
332  j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
333  j.assert_invariant();
334  }
335 };
336 
337 template<>
339 {
340  template<typename BasicJsonType>
341  static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
342  {
343  j.m_type = value_t::object;
344  j.m_value = obj;
345  j.assert_invariant();
346  }
347 
348  template<typename BasicJsonType, typename CompatibleObjectType,
349  enable_if_t<not std::is_same<CompatibleObjectType,
350  typename BasicJsonType::object_t>::value,
351  int> = 0>
352  static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
353  {
354  using std::begin;
355  using std::end;
356 
357  j.m_type = value_t::object;
358  j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
359  j.assert_invariant();
360  }
361 };
362 
363 
365 // has_/is_ functions //
367 
378 #define NLOHMANN_JSON_HAS_HELPER(type) \
379  template<typename T> struct has_##type { \
380  private: \
381  template<typename U, typename = typename U::type> \
382  static int detect(U &&); \
383  static void detect(...); \
384  public: \
385  static constexpr bool value = \
386  std::is_integral<decltype(detect(std::declval<T>()))>::value; \
387  }
388 
389 NLOHMANN_JSON_HAS_HELPER(mapped_type);
390 NLOHMANN_JSON_HAS_HELPER(key_type);
391 NLOHMANN_JSON_HAS_HELPER(value_type);
392 NLOHMANN_JSON_HAS_HELPER(iterator);
393 
394 #undef NLOHMANN_JSON_HAS_HELPER
395 
396 
397 template<bool B, class RealType, class CompatibleObjectType>
398 struct is_compatible_object_type_impl : std::false_type {};
399 
400 template<class RealType, class CompatibleObjectType>
401 struct is_compatible_object_type_impl<true, RealType, CompatibleObjectType>
402 {
403  static constexpr auto value =
404  std::is_constructible<typename RealType::key_type,
405  typename CompatibleObjectType::key_type>::value and
406  std::is_constructible<typename RealType::mapped_type,
407  typename CompatibleObjectType::mapped_type>::value;
408 };
409 
410 template<class BasicJsonType, class CompatibleObjectType>
412 {
413  static auto constexpr value = is_compatible_object_type_impl <
415  has_mapped_type<CompatibleObjectType>,
416  has_key_type<CompatibleObjectType>>::value,
417  typename BasicJsonType::object_t, CompatibleObjectType >::value;
418 };
419 
420 template<typename BasicJsonType, typename T>
422 {
423  static auto constexpr value = std::is_same<T, typename BasicJsonType::iterator>::value or
424  std::is_same<T, typename BasicJsonType::const_iterator>::value or
425  std::is_same<T, typename BasicJsonType::reverse_iterator>::value or
426  std::is_same<T, typename BasicJsonType::const_reverse_iterator>::value or
427  std::is_same<T, typename BasicJsonType::json_pointer>::value;
428 };
429 
430 template<class BasicJsonType, class CompatibleArrayType>
432 {
433  static auto constexpr value =
436  BasicJsonType, CompatibleArrayType>>,
437  negation<std::is_constructible<typename BasicJsonType::string_t,
438  CompatibleArrayType>>,
440  has_value_type<CompatibleArrayType>,
441  has_iterator<CompatibleArrayType>>::value;
442 };
443 
444 template<bool, typename, typename>
445 struct is_compatible_integer_type_impl : std::false_type {};
446 
447 template<typename RealIntegerType, typename CompatibleNumberIntegerType>
448 struct is_compatible_integer_type_impl<true, RealIntegerType, CompatibleNumberIntegerType>
449 {
450  // is there an assert somewhere on overflows?
451  using RealLimits = std::numeric_limits<RealIntegerType>;
452  using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
453 
454  static constexpr auto value =
455  std::is_constructible<RealIntegerType,
456  CompatibleNumberIntegerType>::value and
457  CompatibleLimits::is_integer and
458  RealLimits::is_signed == CompatibleLimits::is_signed;
459 };
460 
461 template<typename RealIntegerType, typename CompatibleNumberIntegerType>
463 {
464  static constexpr auto value =
466  std::is_integral<CompatibleNumberIntegerType>::value and
467  not std::is_same<bool, CompatibleNumberIntegerType>::value,
468  RealIntegerType, CompatibleNumberIntegerType > ::value;
469 };
470 
471 
472 // trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
473 template<typename BasicJsonType, typename T>
475 {
476  private:
477  // also check the return type of from_json
478  template<typename U, typename = enable_if_t<std::is_same<void, decltype(uncvref_t<U>::from_json(
479  std::declval<BasicJsonType>(), std::declval<T&>()))>::value>>
480  static int detect(U&&);
481  static void detect(...);
482 
483  public:
484  static constexpr bool value = std::is_integral<decltype(
485  detect(std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
486 };
487 
488 // This trait checks if JSONSerializer<T>::from_json(json const&) exists
489 // this overload is used for non-default-constructible user-defined-types
490 template<typename BasicJsonType, typename T>
492 {
493  private:
494  template <
495  typename U,
496  typename = enable_if_t<std::is_same<
497  T, decltype(uncvref_t<U>::from_json(std::declval<BasicJsonType>()))>::value >>
498  static int detect(U&&);
499  static void detect(...);
500 
501  public:
502  static constexpr bool value = std::is_integral<decltype(detect(
503  std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
504 };
505 
506 // This trait checks if BasicJsonType::json_serializer<T>::to_json exists
507 template<typename BasicJsonType, typename T>
509 {
510  private:
511  template<typename U, typename = decltype(uncvref_t<U>::to_json(
512  std::declval<BasicJsonType&>(), std::declval<T>()))>
513  static int detect(U&&);
514  static void detect(...);
515 
516  public:
517  static constexpr bool value = std::is_integral<decltype(detect(
518  std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
519 };
520 
521 
523 // to_json //
525 
526 template<typename BasicJsonType, typename T, enable_if_t<
527  std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
528 void to_json(BasicJsonType& j, T b) noexcept
529 {
531 }
532 
533 template<typename BasicJsonType, typename CompatibleString,
534  enable_if_t<std::is_constructible<typename BasicJsonType::string_t,
535  CompatibleString>::value, int> = 0>
536 void to_json(BasicJsonType& j, const CompatibleString& s)
537 {
539 }
540 
541 template<typename BasicJsonType, typename FloatType,
542  enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
543 void to_json(BasicJsonType& j, FloatType val) noexcept
544 {
545  external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
546 }
547 
548 template <
549  typename BasicJsonType, typename CompatibleNumberUnsignedType,
550  enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t,
551  CompatibleNumberUnsignedType>::value, int> = 0 >
552 void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
553 {
554  external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
555 }
556 
557 template <
558  typename BasicJsonType, typename CompatibleNumberIntegerType,
559  enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t,
560  CompatibleNumberIntegerType>::value, int> = 0 >
561 void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
562 {
563  external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
564 }
565 
566 template<typename BasicJsonType, typename UnscopedEnumType,
567  enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0>
568 void to_json(BasicJsonType& j, UnscopedEnumType e) noexcept
569 {
571 }
572 
573 template <
574  typename BasicJsonType, typename CompatibleArrayType,
575  enable_if_t <
577  std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value,
578  int > = 0 >
579 void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
580 {
582 }
583 
584 template <
585  typename BasicJsonType, typename CompatibleObjectType,
586  enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value,
587  int> = 0 >
588 void to_json(BasicJsonType& j, const CompatibleObjectType& arr)
589 {
591 }
592 
593 
595 // from_json //
597 
598 // overloads for basic_json template parameters
599 template<typename BasicJsonType, typename ArithmeticType,
600  enable_if_t<std::is_arithmetic<ArithmeticType>::value and
601  not std::is_same<ArithmeticType,
602  typename BasicJsonType::boolean_t>::value,
603  int> = 0>
604 void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
605 {
606  switch (static_cast<value_t>(j))
607  {
609  {
610  val = static_cast<ArithmeticType>(
611  *j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
612  break;
613  }
615  {
616  val = static_cast<ArithmeticType>(
617  *j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
618  break;
619  }
621  {
622  val = static_cast<ArithmeticType>(
623  *j.template get_ptr<const typename BasicJsonType::number_float_t*>());
624  break;
625  }
626  default:
627  {
628  JSON_THROW(
629  std::domain_error("type must be number, but is " + j.type_name()));
630  }
631  }
632 }
633 
634 template<typename BasicJsonType>
635 void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
636 {
637  if (not j.is_boolean())
638  {
639  JSON_THROW(std::domain_error("type must be boolean, but is " + j.type_name()));
640  }
641  b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
642 }
643 
644 template<typename BasicJsonType>
645 void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
646 {
647  if (not j.is_string())
648  {
649  JSON_THROW(std::domain_error("type must be string, but is " + j.type_name()));
650  }
651  s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
652 }
653 
654 template<typename BasicJsonType>
655 void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
656 {
657  get_arithmetic_value(j, val);
658 }
659 
660 template<typename BasicJsonType>
661 void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
662 {
663  get_arithmetic_value(j, val);
664 }
665 
666 template<typename BasicJsonType>
667 void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
668 {
669  get_arithmetic_value(j, val);
670 }
671 
672 template<typename BasicJsonType, typename UnscopedEnumType,
673  enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0>
674 void from_json(const BasicJsonType& j, UnscopedEnumType& e)
675 {
676  typename std::underlying_type<UnscopedEnumType>::type val;
677  get_arithmetic_value(j, val);
678  e = static_cast<UnscopedEnumType>(val);
679 }
680 
681 template<typename BasicJsonType>
682 void from_json(const BasicJsonType& j, typename BasicJsonType::array_t& arr)
683 {
684  if (not j.is_array())
685  {
686  JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
687  }
688  arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
689 }
690 
691 // forward_list doesn't have an insert method
692 template<typename BasicJsonType, typename T, typename Allocator>
693 void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
694 {
695  // do not perform the check when user wants to retrieve jsons
696  // (except when it's null.. ?)
697  if (j.is_null())
698  {
699  JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
700  }
701  if (not std::is_same<T, BasicJsonType>::value)
702  {
703  if (not j.is_array())
704  {
705  JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
706  }
707  }
708  for (auto it = j.rbegin(), end = j.rend(); it != end; ++it)
709  {
710  l.push_front(it->template get<T>());
711  }
712 }
713 
714 template<typename BasicJsonType, typename CompatibleArrayType>
715 void from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<0>)
716 {
717  using std::begin;
718  using std::end;
719 
720  std::transform(j.begin(), j.end(),
721  std::inserter(arr, end(arr)), [](const BasicJsonType & i)
722  {
723  // get<BasicJsonType>() returns *this, this won't call a from_json
724  // method when value_type is BasicJsonType
725  return i.template get<typename CompatibleArrayType::value_type>();
726  });
727 }
728 
729 template<typename BasicJsonType, typename CompatibleArrayType>
730 auto from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<1>)
731 -> decltype(
732  arr.reserve(std::declval<typename CompatibleArrayType::size_type>()),
733  void())
734 {
735  using std::begin;
736  using std::end;
737 
738  arr.reserve(j.size());
739  std::transform(
740  j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i)
741  {
742  // get<BasicJsonType>() returns *this, this won't call a from_json
743  // method when value_type is BasicJsonType
744  return i.template get<typename CompatibleArrayType::value_type>();
745  });
746 }
747 
748 template<typename BasicJsonType, typename CompatibleArrayType,
749  enable_if_t<is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value and
750  not std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value, int> = 0>
751 void from_json(const BasicJsonType& j, CompatibleArrayType& arr)
752 {
753  if (j.is_null())
754  {
755  JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
756  }
757 
758  // when T == BasicJsonType, do not check if value_t is correct
759  if (not std::is_same<typename CompatibleArrayType::value_type, BasicJsonType>::value)
760  {
761  if (not j.is_array())
762  {
763  JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
764  }
765  }
767 }
768 
769 template<typename BasicJsonType, typename CompatibleObjectType,
770  enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value, int> = 0>
771 void from_json(const BasicJsonType& j, CompatibleObjectType& obj)
772 {
773  if (not j.is_object())
774  {
775  JSON_THROW(std::domain_error("type must be object, but is " + j.type_name()));
776  }
777 
778  auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
779  using std::begin;
780  using std::end;
781  // we could avoid the assignment, but this might require a for loop, which
782  // might be less efficient than the container constructor for some
783  // containers (would it?)
784  obj = CompatibleObjectType(begin(*inner_object), end(*inner_object));
785 }
786 
787 // overload for arithmetic types, not chosen for basic_json template arguments
788 // (BooleanType, etc..); note: Is it really necessary to provide explicit
789 // overloads for boolean_t etc. in case of a custom BooleanType which is not
790 // an arithmetic type?
791 template<typename BasicJsonType, typename ArithmeticType,
792  enable_if_t <
793  std::is_arithmetic<ArithmeticType>::value and
794  not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
795  not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
796  not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
797  not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
798  int> = 0>
799 void from_json(const BasicJsonType& j, ArithmeticType& val)
800 {
801  switch (static_cast<value_t>(j))
802  {
804  {
805  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
806  break;
807  }
809  {
810  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
811  break;
812  }
814  {
815  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
816  break;
817  }
818  case value_t::boolean:
819  {
820  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
821  break;
822  }
823  default:
824  {
825  JSON_THROW(std::domain_error("type must be number, but is " + j.type_name()));
826  }
827  }
828 }
829 
831 {
832  private:
833  template<typename BasicJsonType, typename T>
834  auto call(BasicJsonType& j, T&& val, priority_tag<1>) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
835  -> decltype(to_json(j, std::forward<T>(val)), void())
836  {
837  return to_json(j, std::forward<T>(val));
838  }
839 
840  template<typename BasicJsonType, typename T>
841  void call(BasicJsonType&, T&&, priority_tag<0>) const noexcept
842  {
843  static_assert(sizeof(BasicJsonType) == 0,
844  "could not find to_json() method in T's namespace");
845  }
846 
847  public:
848  template<typename BasicJsonType, typename T>
849  void operator()(BasicJsonType& j, T&& val) const
850  noexcept(noexcept(std::declval<to_json_fn>().call(j, std::forward<T>(val), priority_tag<1> {})))
851  {
852  return call(j, std::forward<T>(val), priority_tag<1> {});
853  }
854 };
855 
857 {
858  private:
859  template<typename BasicJsonType, typename T>
860  auto call(const BasicJsonType& j, T& val, priority_tag<1>) const
861  noexcept(noexcept(from_json(j, val)))
862  -> decltype(from_json(j, val), void())
863  {
864  return from_json(j, val);
865  }
866 
867  template<typename BasicJsonType, typename T>
868  void call(const BasicJsonType&, T&, priority_tag<0>) const noexcept
869  {
870  static_assert(sizeof(BasicJsonType) == 0,
871  "could not find from_json() method in T's namespace");
872  }
873 
874  public:
875  template<typename BasicJsonType, typename T>
876  void operator()(const BasicJsonType& j, T& val) const
877  noexcept(noexcept(std::declval<from_json_fn>().call(j, val, priority_tag<1> {})))
878  {
879  return call(j, val, priority_tag<1> {});
880  }
881 };
882 
883 // taken from ranges-v3
884 template<typename T>
886 {
887  static constexpr T value{};
888 };
889 
890 template<typename T>
891 constexpr T static_const<T>::value;
892 } // namespace detail
893 
894 
896 namespace
897 {
900 }
901 
902 
910 template<typename = void, typename = void>
912 {
922  template<typename BasicJsonType, typename ValueType>
923  static void from_json(BasicJsonType&& j, ValueType& val) noexcept(
924  noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
925  {
926  ::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
927  }
928 
938  template<typename BasicJsonType, typename ValueType>
939  static void to_json(BasicJsonType& j, ValueType&& val) noexcept(
940  noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
941  {
942  ::nlohmann::to_json(j, std::forward<ValueType>(val));
943  }
944 };
945 
946 
1028 template <
1029  template<typename U, typename V, typename... Args> class ObjectType = std::map,
1030  template<typename U, typename... Args> class ArrayType = std::vector,
1031  class StringType = std::string,
1032  class BooleanType = bool,
1033  class NumberIntegerType = std::int64_t,
1034  class NumberUnsignedType = std::uint64_t,
1035  class NumberFloatType = double,
1036  template<typename U> class AllocatorType = std::allocator,
1037  template<typename T, typename SFINAE = void> class JSONSerializer = adl_serializer
1038  >
1040 {
1041  private:
1042  template<detail::value_t> friend struct detail::external_constructor;
1044  using basic_json_t = basic_json<ObjectType, ArrayType, StringType,
1045  BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType,
1046  AllocatorType, JSONSerializer>;
1047 
1048  public:
1050  // forward declarations
1051  template<typename U> class iter_impl;
1052  template<typename Base> class json_reverse_iterator;
1053  class json_pointer;
1054  template<typename T, typename SFINAE>
1055  using json_serializer = JSONSerializer<T, SFINAE>;
1056 
1058  // container types //
1060 
1065 
1068 
1072  using const_reference = const value_type&;
1073 
1075  using difference_type = std::ptrdiff_t;
1077  using size_type = std::size_t;
1078 
1080  using allocator_type = AllocatorType<basic_json>;
1081 
1083  using pointer = typename std::allocator_traits<allocator_type>::pointer;
1085  using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
1086 
1095 
1097 
1098 
1103  {
1104  return allocator_type();
1105  }
1106 
1130  static basic_json meta()
1131  {
1132  basic_json result;
1133 
1134  result["copyright"] = "(C) 2013-2017 Niels Lohmann";
1135  result["name"] = "JSON for Modern C++";
1136  result["url"] = "https://github.com/nlohmann/json";
1137  result["version"] =
1138  {
1139  {"string", "2.1.1"},
1140  {"major", 2},
1141  {"minor", 1},
1142  {"patch", 1}
1143  };
1144 
1145 #ifdef _WIN32
1146  result["platform"] = "win32";
1147 #elif defined __linux__
1148  result["platform"] = "linux";
1149 #elif defined __APPLE__
1150  result["platform"] = "apple";
1151 #elif defined __unix__
1152  result["platform"] = "unix";
1153 #else
1154  result["platform"] = "unknown";
1155 #endif
1156 
1157 #if defined(__clang__)
1158  result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
1159 #elif defined(__ICC) || defined(__INTEL_COMPILER)
1160  result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
1161 #elif defined(__GNUC__) || defined(__GNUG__)
1162  result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}};
1163 #elif defined(__HP_cc) || defined(__HP_aCC)
1164  result["compiler"] = "hp"
1165 #elif defined(__IBMCPP__)
1166  result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
1167 #elif defined(_MSC_VER)
1168  result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
1169 #elif defined(__PGI)
1170  result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
1171 #elif defined(__SUNPRO_CC)
1172  result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
1173 #else
1174  result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
1175 #endif
1176 
1177 #ifdef __cplusplus
1178  result["compiler"]["c++"] = std::to_string(__cplusplus);
1179 #else
1180  result["compiler"]["c++"] = "unknown";
1181 #endif
1182  return result;
1183  }
1184 
1185 
1187  // JSON value data types //
1189 
1194 
1278  using object_t = ObjectType<StringType,
1279  basic_json,
1280  std::less<StringType>,
1281  AllocatorType<std::pair<const StringType,
1283 
1328  using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
1329 
1381  using string_t = StringType;
1382 
1407  using boolean_t = BooleanType;
1408 
1479  using number_integer_t = NumberIntegerType;
1480 
1550  using number_unsigned_t = NumberUnsignedType;
1551 
1618  using number_float_t = NumberFloatType;
1619 
1621 
1622  private:
1623 
1625  template<typename T, typename... Args>
1626  static T* create(Args&& ... args)
1627  {
1628  AllocatorType<T> alloc;
1629  auto deleter = [&](T * object)
1630  {
1631  alloc.deallocate(object, 1);
1632  };
1633  std::unique_ptr<T, decltype(deleter)> object(alloc.allocate(1), deleter);
1634  alloc.construct(object.get(), std::forward<Args>(args)...);
1635  assert(object != nullptr);
1636  return object.release();
1637  }
1638 
1640  // JSON value storage //
1642 
1667  union json_value
1668  {
1670  object_t* object;
1672  array_t* array;
1674  string_t* string;
1676  boolean_t boolean;
1678  number_integer_t number_integer;
1680  number_unsigned_t number_unsigned;
1682  number_float_t number_float;
1683 
1685  json_value() = default;
1687  json_value(boolean_t v) noexcept : boolean(v) {}
1689  json_value(number_integer_t v) noexcept : number_integer(v) {}
1691  json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
1693  json_value(number_float_t v) noexcept : number_float(v) {}
1695  json_value(value_t t)
1696  {
1697  switch (t)
1698  {
1699  case value_t::object:
1700  {
1701  object = create<object_t>();
1702  break;
1703  }
1704 
1705  case value_t::array:
1706  {
1707  array = create<array_t>();
1708  break;
1709  }
1710 
1711  case value_t::string:
1712  {
1713  string = create<string_t>("");
1714  break;
1715  }
1716 
1717  case value_t::boolean:
1718  {
1719  boolean = boolean_t(false);
1720  break;
1721  }
1722 
1724  {
1726  break;
1727  }
1728 
1730  {
1732  break;
1733  }
1734 
1735  case value_t::number_float:
1736  {
1738  break;
1739  }
1740 
1741  case value_t::null:
1742  {
1743  break;
1744  }
1745 
1746  default:
1747  {
1748  if (t == value_t::null)
1749  {
1750  JSON_THROW(std::domain_error("961c151d2e87f2686a955a9be24d316f1362bf21 2.1.1")); // LCOV_EXCL_LINE
1751  }
1752  break;
1753  }
1754  }
1755  }
1756 
1758  json_value(const string_t& value)
1759  {
1760  string = create<string_t>(value);
1761  }
1762 
1764  json_value(const object_t& value)
1765  {
1766  object = create<object_t>(value);
1767  }
1768 
1770  json_value(const array_t& value)
1771  {
1772  array = create<array_t>(value);
1773  }
1774  };
1775 
1785  void assert_invariant() const
1786  {
1787  assert(m_type != value_t::object or m_value.object != nullptr);
1788  assert(m_type != value_t::array or m_value.array != nullptr);
1789  assert(m_type != value_t::string or m_value.string != nullptr);
1790  }
1791 
1792  public:
1794  // JSON parser callback //
1796 
1807  enum class parse_event_t : uint8_t
1808  {
1810  object_start,
1812  object_end,
1814  array_start,
1816  array_end,
1818  key,
1820  value
1821  };
1822 
1875  using parser_callback_t = std::function<bool(int depth,
1876  parse_event_t event,
1877  basic_json& parsed)>;
1878 
1879 
1881  // constructors //
1883 
1888 
1917  : m_type(value_type), m_value(value_type)
1918  {
1919  assert_invariant();
1920  }
1921 
1940  basic_json(std::nullptr_t = nullptr) noexcept
1941  : basic_json(value_t::null)
1942  {
1943  assert_invariant();
1944  }
1945 
1999  template<typename CompatibleType, typename U = detail::uncvref_t<CompatibleType>,
2000  detail::enable_if_t<not std::is_base_of<std::istream, U>::value and
2001  not std::is_same<U, basic_json_t>::value and
2002  not detail::is_basic_json_nested_type<
2003  basic_json_t, U>::value and
2004  detail::has_to_json<basic_json, U>::value,
2005  int> = 0>
2006  basic_json(CompatibleType && val) noexcept(noexcept(JSONSerializer<U>::to_json(
2007  std::declval<basic_json_t&>(), std::forward<CompatibleType>(val))))
2008  {
2009  JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
2010  assert_invariant();
2011  }
2012 
2082  basic_json(std::initializer_list<basic_json> init,
2083  bool type_deduction = true,
2084  value_t manual_type = value_t::array)
2085  {
2086  // check if each element is an array with two elements whose first
2087  // element is a string
2088  bool is_an_object = std::all_of(init.begin(), init.end(),
2089  [](const basic_json & element)
2090  {
2091  return element.is_array() and element.size() == 2 and element[0].is_string();
2092  });
2093 
2094  // adjust type if type deduction is not wanted
2095  if (not type_deduction)
2096  {
2097  // if array is wanted, do not create an object though possible
2098  if (manual_type == value_t::array)
2099  {
2100  is_an_object = false;
2101  }
2102 
2103  // if object is wanted but impossible, throw an exception
2104  if (manual_type == value_t::object and not is_an_object)
2105  {
2106  JSON_THROW(std::domain_error("cannot create object from initializer list"));
2107  }
2108  }
2109 
2110  if (is_an_object)
2111  {
2112  // the initializer list is a list of pairs -> create object
2113  m_type = value_t::object;
2114  m_value = value_t::object;
2115 
2116  std::for_each(init.begin(), init.end(), [this](const basic_json & element)
2117  {
2118  m_value.object->emplace(*(element[0].m_value.string), element[1]);
2119  });
2120  }
2121  else
2122  {
2123  // the initializer list describes an array -> create array
2124  m_type = value_t::array;
2125  m_value.array = create<array_t>(init);
2126  }
2127 
2128  assert_invariant();
2129  }
2130 
2165  static basic_json array(std::initializer_list<basic_json> init =
2166  std::initializer_list<basic_json>())
2167  {
2168  return basic_json(init, false, value_t::array);
2169  }
2170 
2205  static basic_json object(std::initializer_list<basic_json> init =
2206  std::initializer_list<basic_json>())
2207  {
2208  return basic_json(init, false, value_t::object);
2209  }
2210 
2230  : m_type(value_t::array)
2231  {
2232  m_value.array = create<array_t>(cnt, val);
2233  assert_invariant();
2234  }
2235 
2273  template<class InputIT, typename std::enable_if<
2274  std::is_same<InputIT, typename basic_json_t::iterator>::value or
2275  std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0>
2276  basic_json(InputIT first, InputIT last)
2277  {
2278  assert(first.m_object != nullptr);
2279  assert(last.m_object != nullptr);
2280 
2281  // make sure iterator fits the current value
2282  if (first.m_object != last.m_object)
2283  {
2284  JSON_THROW(std::domain_error("iterators are not compatible"));
2285  }
2286 
2287  // copy type from first iterator
2288  m_type = first.m_object->m_type;
2289 
2290  // check if iterator range is complete for primitive values
2291  switch (m_type)
2292  {
2293  case value_t::boolean:
2294  case value_t::number_float:
2297  case value_t::string:
2298  {
2299  if (not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end())
2300  {
2301  JSON_THROW(std::out_of_range("iterators out of range"));
2302  }
2303  break;
2304  }
2305 
2306  default:
2307  {
2308  break;
2309  }
2310  }
2311 
2312  switch (m_type)
2313  {
2315  {
2316  m_value.number_integer = first.m_object->m_value.number_integer;
2317  break;
2318  }
2319 
2321  {
2322  m_value.number_unsigned = first.m_object->m_value.number_unsigned;
2323  break;
2324  }
2325 
2326  case value_t::number_float:
2327  {
2328  m_value.number_float = first.m_object->m_value.number_float;
2329  break;
2330  }
2331 
2332  case value_t::boolean:
2333  {
2334  m_value.boolean = first.m_object->m_value.boolean;
2335  break;
2336  }
2337 
2338  case value_t::string:
2339  {
2340  m_value = *first.m_object->m_value.string;
2341  break;
2342  }
2343 
2344  case value_t::object:
2345  {
2346  m_value.object = create<object_t>(first.m_it.object_iterator,
2347  last.m_it.object_iterator);
2348  break;
2349  }
2350 
2351  case value_t::array:
2352  {
2353  m_value.array = create<array_t>(first.m_it.array_iterator,
2354  last.m_it.array_iterator);
2355  break;
2356  }
2357 
2358  default:
2359  {
2360  JSON_THROW(std::domain_error("cannot use construct with iterators from " + first.m_object->type_name()));
2361  }
2362  }
2363 
2364  assert_invariant();
2365  }
2366 
2396  explicit basic_json(std::istream& i, const parser_callback_t cb = nullptr)
2397  {
2398  *this = parser(i, cb).parse();
2399  assert_invariant();
2400  }
2401 
2403  // other constructors and destructor //
2405 
2428  basic_json(const basic_json& other)
2429  : m_type(other.m_type)
2430  {
2431  // check of passed value is valid
2432  other.assert_invariant();
2433 
2434  switch (m_type)
2435  {
2436  case value_t::object:
2437  {
2438  m_value = *other.m_value.object;
2439  break;
2440  }
2441 
2442  case value_t::array:
2443  {
2444  m_value = *other.m_value.array;
2445  break;
2446  }
2447 
2448  case value_t::string:
2449  {
2450  m_value = *other.m_value.string;
2451  break;
2452  }
2453 
2454  case value_t::boolean:
2455  {
2456  m_value = other.m_value.boolean;
2457  break;
2458  }
2459 
2461  {
2462  m_value = other.m_value.number_integer;
2463  break;
2464  }
2465 
2467  {
2468  m_value = other.m_value.number_unsigned;
2469  break;
2470  }
2471 
2472  case value_t::number_float:
2473  {
2474  m_value = other.m_value.number_float;
2475  break;
2476  }
2477 
2478  default:
2479  {
2480  break;
2481  }
2482  }
2483 
2484  assert_invariant();
2485  }
2486 
2505  basic_json(basic_json&& other) noexcept
2506  : m_type(std::move(other.m_type)),
2507  m_value(std::move(other.m_value))
2508  {
2509  // check that passed value is valid
2510  other.assert_invariant();
2511 
2512  // invalidate payload
2513  other.m_type = value_t::null;
2514  other.m_value = {};
2515 
2516  assert_invariant();
2517  }
2518 
2542  reference& operator=(basic_json other) noexcept (
2543  std::is_nothrow_move_constructible<value_t>::value and
2544  std::is_nothrow_move_assignable<value_t>::value and
2545  std::is_nothrow_move_constructible<json_value>::value and
2546  std::is_nothrow_move_assignable<json_value>::value
2547  )
2548  {
2549  // check that passed value is valid
2550  other.assert_invariant();
2551 
2552  using std::swap;
2553  swap(m_type, other.m_type);
2554  swap(m_value, other.m_value);
2555 
2556  assert_invariant();
2557  return *this;
2558  }
2559 
2576  {
2577  assert_invariant();
2578 
2579  switch (m_type)
2580  {
2581  case value_t::object:
2582  {
2583  AllocatorType<object_t> alloc;
2584  alloc.destroy(m_value.object);
2585  alloc.deallocate(m_value.object, 1);
2586  break;
2587  }
2588 
2589  case value_t::array:
2590  {
2591  AllocatorType<array_t> alloc;
2592  alloc.destroy(m_value.array);
2593  alloc.deallocate(m_value.array, 1);
2594  break;
2595  }
2596 
2597  case value_t::string:
2598  {
2599  AllocatorType<string_t> alloc;
2600  alloc.destroy(m_value.string);
2601  alloc.deallocate(m_value.string, 1);
2602  break;
2603  }
2604 
2605  default:
2606  {
2607  // all other types need no specific destructor
2608  break;
2609  }
2610  }
2611  }
2612 
2614 
2615  public:
2617  // object inspection //
2619 
2623 
2647  string_t dump(const int indent = -1) const
2648  {
2649  std::stringstream ss;
2650 
2651  if (indent >= 0)
2652  {
2653  dump(ss, true, static_cast<unsigned int>(indent));
2654  }
2655  else
2656  {
2657  dump(ss, false, 0);
2658  }
2659 
2660  return ss.str();
2661  }
2662 
2681  constexpr value_t type() const noexcept
2682  {
2683  return m_type;
2684  }
2685 
2711  constexpr bool is_primitive() const noexcept
2712  {
2713  return is_null() or is_string() or is_boolean() or is_number();
2714  }
2715 
2738  constexpr bool is_structured() const noexcept
2739  {
2740  return is_array() or is_object();
2741  }
2742 
2760  constexpr bool is_null() const noexcept
2761  {
2762  return m_type == value_t::null;
2763  }
2764 
2782  constexpr bool is_boolean() const noexcept
2783  {
2784  return m_type == value_t::boolean;
2785  }
2786 
2812  constexpr bool is_number() const noexcept
2813  {
2814  return is_number_integer() or is_number_float();
2815  }
2816 
2841  constexpr bool is_number_integer() const noexcept
2842  {
2843  return m_type == value_t::number_integer or m_type == value_t::number_unsigned;
2844  }
2845 
2869  constexpr bool is_number_unsigned() const noexcept
2870  {
2871  return m_type == value_t::number_unsigned;
2872  }
2873 
2897  constexpr bool is_number_float() const noexcept
2898  {
2899  return m_type == value_t::number_float;
2900  }
2901 
2919  constexpr bool is_object() const noexcept
2920  {
2921  return m_type == value_t::object;
2922  }
2923 
2941  constexpr bool is_array() const noexcept
2942  {
2943  return m_type == value_t::array;
2944  }
2945 
2963  constexpr bool is_string() const noexcept
2964  {
2965  return m_type == value_t::string;
2966  }
2967 
2990  constexpr bool is_discarded() const noexcept
2991  {
2992  return m_type == value_t::discarded;
2993  }
2994 
3013  constexpr operator value_t() const noexcept
3014  {
3015  return m_type;
3016  }
3017 
3019 
3020  private:
3022  // value access //
3024 
3026  boolean_t get_impl(boolean_t* /*unused*/) const
3027  {
3028  if (is_boolean())
3029  {
3030  return m_value.boolean;
3031  }
3032 
3033  JSON_THROW(std::domain_error("type must be boolean, but is " + type_name()));
3034  }
3035 
3037  object_t* get_impl_ptr(object_t* /*unused*/) noexcept
3038  {
3039  return is_object() ? m_value.object : nullptr;
3040  }
3041 
3043  constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
3044  {
3045  return is_object() ? m_value.object : nullptr;
3046  }
3047 
3049  array_t* get_impl_ptr(array_t* /*unused*/) noexcept
3050  {
3051  return is_array() ? m_value.array : nullptr;
3052  }
3053 
3055  constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
3056  {
3057  return is_array() ? m_value.array : nullptr;
3058  }
3059 
3061  string_t* get_impl_ptr(string_t* /*unused*/) noexcept
3062  {
3063  return is_string() ? m_value.string : nullptr;
3064  }
3065 
3067  constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
3068  {
3069  return is_string() ? m_value.string : nullptr;
3070  }
3071 
3073  boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
3074  {
3075  return is_boolean() ? &m_value.boolean : nullptr;
3076  }
3077 
3079  constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
3080  {
3081  return is_boolean() ? &m_value.boolean : nullptr;
3082  }
3083 
3085  number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept
3086  {
3087  return is_number_integer() ? &m_value.number_integer : nullptr;
3088  }
3089 
3091  constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
3092  {
3093  return is_number_integer() ? &m_value.number_integer : nullptr;
3094  }
3095 
3097  number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept
3098  {
3099  return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
3100  }
3101 
3103  constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
3104  {
3105  return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
3106  }
3107 
3109  number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept
3110  {
3111  return is_number_float() ? &m_value.number_float : nullptr;
3112  }
3113 
3115  constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
3116  {
3117  return is_number_float() ? &m_value.number_float : nullptr;
3118  }
3119 
3131  template<typename ReferenceType, typename ThisType>
3132  static ReferenceType get_ref_impl(ThisType& obj)
3133  {
3134  // helper type
3135  using PointerType = typename std::add_pointer<ReferenceType>::type;
3136 
3137  // delegate the call to get_ptr<>()
3138  auto ptr = obj.template get_ptr<PointerType>();
3139 
3140  if (ptr != nullptr)
3141  {
3142  return *ptr;
3143  }
3144 
3145  JSON_THROW(std::domain_error("incompatible ReferenceType for get_ref, actual type is " +
3146  obj.type_name()));
3147  }
3148 
3149  public:
3153 
3168  template <
3169  typename BasicJsonType,
3170  detail::enable_if_t<std::is_same<typename std::remove_const<BasicJsonType>::type,
3171  basic_json_t>::value,
3172  int> = 0 >
3173  basic_json get() const
3174  {
3175  return *this;
3176  }
3177 
3217  template <
3218  typename ValueTypeCV,
3219  typename ValueType = detail::uncvref_t<ValueTypeCV>,
3221  not std::is_same<basic_json_t, ValueType>::value and
3224  int > = 0 >
3225  ValueType get() const noexcept(noexcept(
3226  JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
3227  {
3228  // we cannot static_assert on ValueTypeCV being non-const, because
3229  // there is support for get<const basic_json_t>(), which is why we
3230  // still need the uncvref
3231  static_assert(not std::is_reference<ValueTypeCV>::value,
3232  "get() cannot be used with reference types, you might want to use get_ref()");
3233  static_assert(std::is_default_constructible<ValueType>::value,
3234  "types must be DefaultConstructible when used with get()");
3235 
3236  ValueType ret;
3238  return ret;
3239  }
3240 
3272  template <
3273  typename ValueTypeCV,
3274  typename ValueType = detail::uncvref_t<ValueTypeCV>,
3276  detail::has_non_default_from_json<basic_json_t,
3277  ValueType>::value, int> = 0 >
3278  ValueType get() const noexcept(noexcept(
3279  JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>())))
3280  {
3281  static_assert(not std::is_reference<ValueTypeCV>::value,
3282  "get() cannot be used with reference types, you might want to use get_ref()");
3284  }
3285 
3313  template<typename PointerType, typename std::enable_if<
3314  std::is_pointer<PointerType>::value, int>::type = 0>
3315  PointerType get() noexcept
3316  {
3317  // delegate the call to get_ptr
3318  return get_ptr<PointerType>();
3319  }
3320 
3325  template<typename PointerType, typename std::enable_if<
3326  std::is_pointer<PointerType>::value, int>::type = 0>
3327  constexpr const PointerType get() const noexcept
3328  {
3329  // delegate the call to get_ptr
3330  return get_ptr<PointerType>();
3331  }
3332 
3359  template<typename PointerType, typename std::enable_if<
3360  std::is_pointer<PointerType>::value, int>::type = 0>
3361  PointerType get_ptr() noexcept
3362  {
3363  // get the type of the PointerType (remove pointer and const)
3364  using pointee_t = typename std::remove_const<typename
3365  std::remove_pointer<typename
3366  std::remove_const<PointerType>::type>::type>::type;
3367  // make sure the type matches the allowed types
3368  static_assert(
3369  std::is_same<object_t, pointee_t>::value
3370  or std::is_same<array_t, pointee_t>::value
3371  or std::is_same<string_t, pointee_t>::value
3372  or std::is_same<boolean_t, pointee_t>::value
3373  or std::is_same<number_integer_t, pointee_t>::value
3374  or std::is_same<number_unsigned_t, pointee_t>::value
3375  or std::is_same<number_float_t, pointee_t>::value
3376  , "incompatible pointer type");
3377 
3378  // delegate the call to get_impl_ptr<>()
3379  return get_impl_ptr(static_cast<PointerType>(nullptr));
3380  }
3381 
3386  template<typename PointerType, typename std::enable_if<
3387  std::is_pointer<PointerType>::value and
3388  std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0>
3389  constexpr const PointerType get_ptr() const noexcept
3390  {
3391  // get the type of the PointerType (remove pointer and const)
3392  using pointee_t = typename std::remove_const<typename
3393  std::remove_pointer<typename
3394  std::remove_const<PointerType>::type>::type>::type;
3395  // make sure the type matches the allowed types
3396  static_assert(
3397  std::is_same<object_t, pointee_t>::value
3398  or std::is_same<array_t, pointee_t>::value
3399  or std::is_same<string_t, pointee_t>::value
3400  or std::is_same<boolean_t, pointee_t>::value
3401  or std::is_same<number_integer_t, pointee_t>::value
3402  or std::is_same<number_unsigned_t, pointee_t>::value
3403  or std::is_same<number_float_t, pointee_t>::value
3404  , "incompatible pointer type");
3405 
3406  // delegate the call to get_impl_ptr<>() const
3407  return get_impl_ptr(static_cast<const PointerType>(nullptr));
3408  }
3409 
3436  template<typename ReferenceType, typename std::enable_if<
3437  std::is_reference<ReferenceType>::value, int>::type = 0>
3438  ReferenceType get_ref()
3439  {
3440  // delegate call to get_ref_impl
3441  return get_ref_impl<ReferenceType>(*this);
3442  }
3443 
3448  template<typename ReferenceType, typename std::enable_if<
3449  std::is_reference<ReferenceType>::value and
3450  std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0>
3451  ReferenceType get_ref() const
3452  {
3453  // delegate call to get_ref_impl
3454  return get_ref_impl<ReferenceType>(*this);
3455  }
3456 
3485  template < typename ValueType, typename std::enable_if <
3486  not std::is_pointer<ValueType>::value and
3487  not std::is_same<ValueType, typename string_t::value_type>::value
3488 #ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
3489  and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
3490 #endif
3491  , int >::type = 0 >
3492  operator ValueType() const
3493  {
3494  // delegate the call to get<>() const
3495  return get<ValueType>();
3496  }
3497 
3499 
3500 
3502  // element access //
3504 
3508 
3532  {
3533  // at only works for arrays
3534  if (is_array())
3535  {
3536  JSON_TRY
3537  {
3538  return m_value.array->at(idx);
3539  }
3540  JSON_CATCH (std::out_of_range&)
3541  {
3542  // create better exception explanation
3543  JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range"));
3544  }
3545  }
3546  else
3547  {
3548  JSON_THROW(std::domain_error("cannot use at() with " + type_name()));
3549  }
3550  }
3551 
3575  {
3576  // at only works for arrays
3577  if (is_array())
3578  {
3579  JSON_TRY
3580  {
3581  return m_value.array->at(idx);
3582  }
3583  JSON_CATCH (std::out_of_range&)
3584  {
3585  // create better exception explanation
3586  JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range"));
3587  }
3588  }
3589  else
3590  {
3591  JSON_THROW(std::domain_error("cannot use at() with " + type_name()));
3592  }
3593  }
3594 
3621  reference at(const typename object_t::key_type& key)
3622  {
3623  // at only works for objects
3624  if (is_object())
3625  {
3626  JSON_TRY
3627  {
3628  return m_value.object->at(key);
3629  }
3630  JSON_CATCH (std::out_of_range&)
3631  {
3632  // create better exception explanation
3633  JSON_THROW(std::out_of_range("key '" + key + "' not found"));
3634  }
3635  }
3636  else
3637  {
3638  JSON_THROW(std::domain_error("cannot use at() with " + type_name()));
3639  }
3640  }
3641 
3668  const_reference at(const typename object_t::key_type& key) const
3669  {
3670  // at only works for objects
3671  if (is_object())
3672  {
3673  JSON_TRY
3674  {
3675  return m_value.object->at(key);
3676  }
3677  JSON_CATCH (std::out_of_range&)
3678  {
3679  // create better exception explanation
3680  JSON_THROW(std::out_of_range("key '" + key + "' not found"));
3681  }
3682  }
3683  else
3684  {
3685  JSON_THROW(std::domain_error("cannot use at() with " + type_name()));
3686  }
3687  }
3688 
3715  {
3716  // implicitly convert null value to an empty array
3717  if (is_null())
3718  {
3719  m_type = value_t::array;
3720  m_value.array = create<array_t>();
3721  assert_invariant();
3722  }
3723 
3724  // operator[] only works for arrays
3725  if (is_array())
3726  {
3727  // fill up array with null values if given idx is outside range
3728  if (idx >= m_value.array->size())
3729  {
3730  m_value.array->insert(m_value.array->end(),
3731  idx - m_value.array->size() + 1,
3732  basic_json());
3733  }
3734 
3735  return m_value.array->operator[](idx);
3736  }
3737 
3738  JSON_THROW(std::domain_error("cannot use operator[] with " + type_name()));
3739  }
3740 
3761  {
3762  // const operator[] only works for arrays
3763  if (is_array())
3764  {
3765  return m_value.array->operator[](idx);
3766  }
3767 
3768  JSON_THROW(std::domain_error("cannot use operator[] with " + type_name()));
3769  }
3770 
3798  reference operator[](const typename object_t::key_type& key)
3799  {
3800  // implicitly convert null value to an empty object
3801  if (is_null())
3802  {
3803  m_type = value_t::object;
3804  m_value.object = create<object_t>();
3805  assert_invariant();
3806  }
3807 
3808  // operator[] only works for objects
3809  if (is_object())
3810  {
3811  return m_value.object->operator[](key);
3812  }
3813 
3814  JSON_THROW(std::domain_error("cannot use operator[] with " + type_name()));
3815  }
3816 
3847  const_reference operator[](const typename object_t::key_type& key) const
3848  {
3849  // const operator[] only works for objects
3850  if (is_object())
3851  {
3852  assert(m_value.object->find(key) != m_value.object->end());
3853  return m_value.object->find(key)->second;
3854  }
3855 
3856  JSON_THROW(std::domain_error("cannot use operator[] with " + type_name()));
3857  }
3858 
3886  template<typename T, std::size_t n>
3887  reference operator[](T * (&key)[n])
3888  {
3889  return operator[](static_cast<const T>(key));
3890  }
3891 
3921  template<typename T, std::size_t n>
3922  const_reference operator[](T * (&key)[n]) const
3923  {
3924  return operator[](static_cast<const T>(key));
3925  }
3926 
3954  template<typename T>
3956  {
3957  // implicitly convert null to object
3958  if (is_null())
3959  {
3960  m_type = value_t::object;
3961  m_value = value_t::object;
3962  assert_invariant();
3963  }
3964 
3965  // at only works for objects
3966  if (is_object())
3967  {
3968  return m_value.object->operator[](key);
3969  }
3970 
3971  JSON_THROW(std::domain_error("cannot use operator[] with " + type_name()));
3972  }
3973 
4004  template<typename T>
4006  {
4007  // at only works for objects
4008  if (is_object())
4009  {
4010  assert(m_value.object->find(key) != m_value.object->end());
4011  return m_value.object->find(key)->second;
4012  }
4013 
4014  JSON_THROW(std::domain_error("cannot use operator[] with " + type_name()));
4015  }
4016 
4065  template<class ValueType, typename std::enable_if<
4066  std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
4067  ValueType value(const typename object_t::key_type& key, ValueType default_value) const
4068  {
4069  // at only works for objects
4070  if (is_object())
4071  {
4072  // if key is found, return value and given default value otherwise
4073  const auto it = find(key);
4074  if (it != end())
4075  {
4076  return *it;
4077  }
4078 
4079  return default_value;
4080  }
4081  else
4082  {
4083  JSON_THROW(std::domain_error("cannot use value() with " + type_name()));
4084  }
4085  }
4086 
4091  string_t value(const typename object_t::key_type& key, const char* default_value) const
4092  {
4093  return value(key, string_t(default_value));
4094  }
4095 
4137  template<class ValueType, typename std::enable_if<
4138  std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
4139  ValueType value(const json_pointer& ptr, ValueType default_value) const
4140  {
4141  // at only works for objects
4142  if (is_object())
4143  {
4144  // if pointer resolves a value, return it or use default value
4145  JSON_TRY
4146  {
4147  return ptr.get_checked(this);
4148  }
4149  JSON_CATCH (std::out_of_range&)
4150  {
4151  return default_value;
4152  }
4153  }
4154 
4155  JSON_THROW(std::domain_error("cannot use value() with " + type_name()));
4156  }
4157 
4162  string_t value(const json_pointer& ptr, const char* default_value) const
4163  {
4164  return value(ptr, string_t(default_value));
4165  }
4166 
4193  {
4194  return *begin();
4195  }
4196 
4201  {
4202  return *cbegin();
4203  }
4204 
4236  {
4237  auto tmp = end();
4238  --tmp;
4239  return *tmp;
4240  }
4241 
4246  {
4247  auto tmp = cend();
4248  --tmp;
4249  return *tmp;
4250  }
4251 
4297  template<class IteratorType, typename std::enable_if<
4298  std::is_same<IteratorType, typename basic_json_t::iterator>::value or
4299  std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
4300  = 0>
4301  IteratorType erase(IteratorType pos)
4302  {
4303  // make sure iterator fits the current value
4304  if (this != pos.m_object)
4305  {
4306  JSON_THROW(std::domain_error("iterator does not fit current value"));
4307  }
4308 
4309  IteratorType result = end();
4310 
4311  switch (m_type)
4312  {
4313  case value_t::boolean:
4314  case value_t::number_float:
4317  case value_t::string:
4318  {
4319  if (not pos.m_it.primitive_iterator.is_begin())
4320  {
4321  JSON_THROW(std::out_of_range("iterator out of range"));
4322  }
4323 
4324  if (is_string())
4325  {
4326  AllocatorType<string_t> alloc;
4327  alloc.destroy(m_value.string);
4328  alloc.deallocate(m_value.string, 1);
4329  m_value.string = nullptr;
4330  }
4331 
4332  m_type = value_t::null;
4333  assert_invariant();
4334  break;
4335  }
4336 
4337  case value_t::object:
4338  {
4339  result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
4340  break;
4341  }
4342 
4343  case value_t::array:
4344  {
4345  result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
4346  break;
4347  }
4348 
4349  default:
4350  {
4351  JSON_THROW(std::domain_error("cannot use erase() with " + type_name()));
4352  }
4353  }
4354 
4355  return result;
4356  }
4357 
4404  template<class IteratorType, typename std::enable_if<
4405  std::is_same<IteratorType, typename basic_json_t::iterator>::value or
4406  std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
4407  = 0>
4408  IteratorType erase(IteratorType first, IteratorType last)
4409  {
4410  // make sure iterator fits the current value
4411  if (this != first.m_object or this != last.m_object)
4412  {
4413  JSON_THROW(std::domain_error("iterators do not fit current value"));
4414  }
4415 
4416  IteratorType result = end();
4417 
4418  switch (m_type)
4419  {
4420  case value_t::boolean:
4421  case value_t::number_float:
4424  case value_t::string:
4425  {
4426  if (not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end())
4427  {
4428  JSON_THROW(std::out_of_range("iterators out of range"));
4429  }
4430 
4431  if (is_string())
4432  {
4433  AllocatorType<string_t> alloc;
4434  alloc.destroy(m_value.string);
4435  alloc.deallocate(m_value.string, 1);
4436  m_value.string = nullptr;
4437  }
4438 
4439  m_type = value_t::null;
4440  assert_invariant();
4441  break;
4442  }
4443 
4444  case value_t::object:
4445  {
4446  result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
4447  last.m_it.object_iterator);
4448  break;
4449  }
4450 
4451  case value_t::array:
4452  {
4453  result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
4454  last.m_it.array_iterator);
4455  break;
4456  }
4457 
4458  default:
4459  {
4460  JSON_THROW(std::domain_error("cannot use erase() with " + type_name()));
4461  }
4462  }
4463 
4464  return result;
4465  }
4466 
4496  size_type erase(const typename object_t::key_type& key)
4497  {
4498  // this erase only works for objects
4499  if (is_object())
4500  {
4501  return m_value.object->erase(key);
4502  }
4503 
4504  JSON_THROW(std::domain_error("cannot use erase() with " + type_name()));
4505  }
4506 
4531  void erase(const size_type idx)
4532  {
4533  // this erase only works for arrays
4534  if (is_array())
4535  {
4536  if (idx >= size())
4537  {
4538  JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range"));
4539  }
4540 
4541  m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
4542  }
4543  else
4544  {
4545  JSON_THROW(std::domain_error("cannot use erase() with " + type_name()));
4546  }
4547  }
4548 
4550 
4551 
4553  // lookup //
4555 
4558 
4581  iterator find(typename object_t::key_type key)
4582  {
4583  auto result = end();
4584 
4585  if (is_object())
4586  {
4587  result.m_it.object_iterator = m_value.object->find(key);
4588  }
4589 
4590  return result;
4591  }
4592 
4597  const_iterator find(typename object_t::key_type key) const
4598  {
4599  auto result = cend();
4600 
4601  if (is_object())
4602  {
4603  result.m_it.object_iterator = m_value.object->find(key);
4604  }
4605 
4606  return result;
4607  }
4608 
4630  size_type count(typename object_t::key_type key) const
4631  {
4632  // return 0 for all nonobject types
4633  return is_object() ? m_value.object->count(key) : 0;
4634  }
4635 
4637 
4638 
4640  // iterators //
4642 
4645 
4670  iterator begin() noexcept
4671  {
4672  iterator result(this);
4673  result.set_begin();
4674  return result;
4675  }
4676 
4680  const_iterator begin() const noexcept
4681  {
4682  return cbegin();
4683  }
4684 
4710  const_iterator cbegin() const noexcept
4711  {
4712  const_iterator result(this);
4713  result.set_begin();
4714  return result;
4715  }
4716 
4741  iterator end() noexcept
4742  {
4743  iterator result(this);
4744  result.set_end();
4745  return result;
4746  }
4747 
4751  const_iterator end() const noexcept
4752  {
4753  return cend();
4754  }
4755 
4781  const_iterator cend() const noexcept
4782  {
4783  const_iterator result(this);
4784  result.set_end();
4785  return result;
4786  }
4787 
4812  {
4813  return reverse_iterator(end());
4814  }
4815 
4820  {
4821  return crbegin();
4822  }
4823 
4849  {
4850  return reverse_iterator(begin());
4851  }
4852 
4856  const_reverse_iterator rend() const noexcept
4857  {
4858  return crend();
4859  }
4860 
4886  {
4887  return const_reverse_iterator(cend());
4888  }
4889 
4915  {
4916  return const_reverse_iterator(cbegin());
4917  }
4918 
4919  private:
4920  // forward declaration
4921  template<typename IteratorType> class iteration_proxy;
4922 
4923  public:
4935  static iteration_proxy<iterator> iterator_wrapper(reference cont)
4936  {
4937  return iteration_proxy<iterator>(cont);
4938  }
4939 
4943  static iteration_proxy<const_iterator> iterator_wrapper(const_reference cont)
4944  {
4945  return iteration_proxy<const_iterator>(cont);
4946  }
4947 
4949 
4950 
4952  // capacity //
4954 
4957 
4995  bool empty() const noexcept
4996  {
4997  switch (m_type)
4998  {
4999  case value_t::null:
5000  {
5001  // null values are empty
5002  return true;
5003  }
5004 
5005  case value_t::array:
5006  {
5007  // delegate call to array_t::empty()
5008  return m_value.array->empty();
5009  }
5010 
5011  case value_t::object:
5012  {
5013  // delegate call to object_t::empty()
5014  return m_value.object->empty();
5015  }
5016 
5017  default:
5018  {
5019  // all other types are nonempty
5020  return false;
5021  }
5022  }
5023  }
5024 
5063  size_type size() const noexcept
5064  {
5065  switch (m_type)
5066  {
5067  case value_t::null:
5068  {
5069  // null values are empty
5070  return 0;
5071  }
5072 
5073  case value_t::array:
5074  {
5075  // delegate call to array_t::size()
5076  return m_value.array->size();
5077  }
5078 
5079  case value_t::object:
5080  {
5081  // delegate call to object_t::size()
5082  return m_value.object->size();
5083  }
5084 
5085  default:
5086  {
5087  // all other types have size 1
5088  return 1;
5089  }
5090  }
5091  }
5092 
5129  size_type max_size() const noexcept
5130  {
5131  switch (m_type)
5132  {
5133  case value_t::array:
5134  {
5135  // delegate call to array_t::max_size()
5136  return m_value.array->max_size();
5137  }
5138 
5139  case value_t::object:
5140  {
5141  // delegate call to object_t::max_size()
5142  return m_value.object->max_size();
5143  }
5144 
5145  default:
5146  {
5147  // all other types have max_size() == size()
5148  return size();
5149  }
5150  }
5151  }
5152 
5154 
5155 
5157  // modifiers //
5159 
5162 
5185  void clear() noexcept
5186  {
5187  switch (m_type)
5188  {
5190  {
5191  m_value.number_integer = 0;
5192  break;
5193  }
5194 
5196  {
5197  m_value.number_unsigned = 0;
5198  break;
5199  }
5200 
5201  case value_t::number_float:
5202  {
5203  m_value.number_float = 0.0;
5204  break;
5205  }
5206 
5207  case value_t::boolean:
5208  {
5209  m_value.boolean = false;
5210  break;
5211  }
5212 
5213  case value_t::string:
5214  {
5215  m_value.string->clear();
5216  break;
5217  }
5218 
5219  case value_t::array:
5220  {
5221  m_value.array->clear();
5222  break;
5223  }
5224 
5225  case value_t::object:
5226  {
5227  m_value.object->clear();
5228  break;
5229  }
5230 
5231  default:
5232  {
5233  break;
5234  }
5235  }
5236  }
5237 
5258  void push_back(basic_json&& val)
5259  {
5260  // push_back only works for null objects or arrays
5261  if (not(is_null() or is_array()))
5262  {
5263  JSON_THROW(std::domain_error("cannot use push_back() with " + type_name()));
5264  }
5265 
5266  // transform null object into an array
5267  if (is_null())
5268  {
5269  m_type = value_t::array;
5270  m_value = value_t::array;
5271  assert_invariant();
5272  }
5273 
5274  // add element to array (move semantics)
5275  m_value.array->push_back(std::move(val));
5276  // invalidate object
5277  val.m_type = value_t::null;
5278  }
5279 
5285  {
5286  push_back(std::move(val));
5287  return *this;
5288  }
5289 
5294  void push_back(const basic_json& val)
5295  {
5296  // push_back only works for null objects or arrays
5297  if (not(is_null() or is_array()))
5298  {
5299  JSON_THROW(std::domain_error("cannot use push_back() with " + type_name()));
5300  }
5301 
5302  // transform null object into an array
5303  if (is_null())
5304  {
5305  m_type = value_t::array;
5306  m_value = value_t::array;
5307  assert_invariant();
5308  }
5309 
5310  // add element to array
5311  m_value.array->push_back(val);
5312  }
5313 
5319  {
5320  push_back(val);
5321  return *this;
5322  }
5323 
5344  void push_back(const typename object_t::value_type& val)
5345  {
5346  // push_back only works for null objects or objects
5347  if (not(is_null() or is_object()))
5348  {
5349  JSON_THROW(std::domain_error("cannot use push_back() with " + type_name()));
5350  }
5351 
5352  // transform null object into an object
5353  if (is_null())
5354  {
5355  m_type = value_t::object;
5356  m_value = value_t::object;
5357  assert_invariant();
5358  }
5359 
5360  // add element to array
5361  m_value.object->insert(val);
5362  }
5363 
5368  reference operator+=(const typename object_t::value_type& val)
5369  {
5370  push_back(val);
5371  return *this;
5372  }
5373 
5399  void push_back(std::initializer_list<basic_json> init)
5400  {
5401  if (is_object() and init.size() == 2 and init.begin()->is_string())
5402  {
5403  const string_t key = *init.begin();
5404  push_back(typename object_t::value_type(key, *(init.begin() + 1)));
5405  }
5406  else
5407  {
5408  push_back(basic_json(init));
5409  }
5410  }
5411 
5416  reference operator+=(std::initializer_list<basic_json> init)
5417  {
5418  push_back(init);
5419  return *this;
5420  }
5421 
5443  template<class... Args>
5444  void emplace_back(Args&& ... args)
5445  {
5446  // emplace_back only works for null objects or arrays
5447  if (not(is_null() or is_array()))
5448  {
5449  JSON_THROW(std::domain_error("cannot use emplace_back() with " + type_name()));
5450  }
5451 
5452  // transform null object into an array
5453  if (is_null())
5454  {
5455  m_type = value_t::array;
5456  m_value = value_t::array;
5457  assert_invariant();
5458  }
5459 
5460  // add element to array (perfect forwarding)
5461  m_value.array->emplace_back(std::forward<Args>(args)...);
5462  }
5463 
5491  template<class... Args>
5492  std::pair<iterator, bool> emplace(Args&& ... args)
5493  {
5494  // emplace only works for null objects or arrays
5495  if (not(is_null() or is_object()))
5496  {
5497  JSON_THROW(std::domain_error("cannot use emplace() with " + type_name()));
5498  }
5499 
5500  // transform null object into an object
5501  if (is_null())
5502  {
5503  m_type = value_t::object;
5504  m_value = value_t::object;
5505  assert_invariant();
5506  }
5507 
5508  // add element to array (perfect forwarding)
5509  auto res = m_value.object->emplace(std::forward<Args>(args)...);
5510  // create result iterator and set iterator to the result of emplace
5511  auto it = begin();
5512  it.m_it.object_iterator = res.first;
5513 
5514  // return pair of iterator and boolean
5515  return {it, res.second};
5516  }
5517 
5541  {
5542  // insert only works for arrays
5543  if (is_array())
5544  {
5545  // check if iterator pos fits to this JSON value
5546  if (pos.m_object != this)
5547  {
5548  JSON_THROW(std::domain_error("iterator does not fit current value"));
5549  }
5550 
5551  // insert to array and return iterator
5552  iterator result(this);
5553  result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, val);
5554  return result;
5555  }
5556 
5557  JSON_THROW(std::domain_error("cannot use insert() with " + type_name()));
5558  }
5559 
5565  {
5566  return insert(pos, val);
5567  }
5568 
5594  {
5595  // insert only works for arrays
5596  if (is_array())
5597  {
5598  // check if iterator pos fits to this JSON value
5599  if (pos.m_object != this)
5600  {
5601  JSON_THROW(std::domain_error("iterator does not fit current value"));
5602  }
5603 
5604  // insert to array and return iterator
5605  iterator result(this);
5606  result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
5607  return result;
5608  }
5609 
5610  JSON_THROW(std::domain_error("cannot use insert() with " + type_name()));
5611  }
5612 
5644  {
5645  // insert only works for arrays
5646  if (not is_array())
5647  {
5648  JSON_THROW(std::domain_error("cannot use insert() with " + type_name()));
5649  }
5650 
5651  // check if iterator pos fits to this JSON value
5652  if (pos.m_object != this)
5653  {
5654  JSON_THROW(std::domain_error("iterator does not fit current value"));
5655  }
5656 
5657  // check if range iterators belong to the same JSON object
5658  if (first.m_object != last.m_object)
5659  {
5660  JSON_THROW(std::domain_error("iterators do not fit"));
5661  }
5662 
5663  if (first.m_object == this or last.m_object == this)
5664  {
5665  JSON_THROW(std::domain_error("passed iterators may not belong to container"));
5666  }
5667 
5668  // insert to array and return iterator
5669  iterator result(this);
5670  result.m_it.array_iterator = m_value.array->insert(
5671  pos.m_it.array_iterator,
5672  first.m_it.array_iterator,
5673  last.m_it.array_iterator);
5674  return result;
5675  }
5676 
5701  iterator insert(const_iterator pos, std::initializer_list<basic_json> ilist)
5702  {
5703  // insert only works for arrays
5704  if (not is_array())
5705  {
5706  JSON_THROW(std::domain_error("cannot use insert() with " + type_name()));
5707  }
5708 
5709  // check if iterator pos fits to this JSON value
5710  if (pos.m_object != this)
5711  {
5712  JSON_THROW(std::domain_error("iterator does not fit current value"));
5713  }
5714 
5715  // insert to array and return iterator
5716  iterator result(this);
5717  result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, ilist);
5718  return result;
5719  }
5720 
5738  void swap(reference other) noexcept (
5739  std::is_nothrow_move_constructible<value_t>::value and
5740  std::is_nothrow_move_assignable<value_t>::value and
5741  std::is_nothrow_move_constructible<json_value>::value and
5742  std::is_nothrow_move_assignable<json_value>::value
5743  )
5744  {
5745  std::swap(m_type, other.m_type);
5746  std::swap(m_value, other.m_value);
5747  assert_invariant();
5748  }
5749 
5770  void swap(array_t& other)
5771  {
5772  // swap only works for arrays
5773  if (is_array())
5774  {
5775  std::swap(*(m_value.array), other);
5776  }
5777  else
5778  {
5779  JSON_THROW(std::domain_error("cannot use swap() with " + type_name()));
5780  }
5781  }
5782 
5803  void swap(object_t& other)
5804  {
5805  // swap only works for objects
5806  if (is_object())
5807  {
5808  std::swap(*(m_value.object), other);
5809  }
5810  else
5811  {
5812  JSON_THROW(std::domain_error("cannot use swap() with " + type_name()));
5813  }
5814  }
5815 
5836  void swap(string_t& other)
5837  {
5838  // swap only works for strings
5839  if (is_string())
5840  {
5841  std::swap(*(m_value.string), other);
5842  }
5843  else
5844  {
5845  JSON_THROW(std::domain_error("cannot use swap() with " + type_name()));
5846  }
5847  }
5848 
5850 
5851  public:
5853  // lexicographical comparison operators //
5855 
5858 
5882  friend bool operator==(const_reference lhs, const_reference rhs) noexcept
5883  {
5884  const auto lhs_type = lhs.type();
5885  const auto rhs_type = rhs.type();
5886 
5887  if (lhs_type == rhs_type)
5888  {
5889  switch (lhs_type)
5890  {
5891  case value_t::array:
5892  {
5893  return *lhs.m_value.array == *rhs.m_value.array;
5894  }
5895  case value_t::object:
5896  {
5897  return *lhs.m_value.object == *rhs.m_value.object;
5898  }
5899  case value_t::null:
5900  {
5901  return true;
5902  }
5903  case value_t::string:
5904  {
5905  return *lhs.m_value.string == *rhs.m_value.string;
5906  }
5907  case value_t::boolean:
5908  {
5909  return lhs.m_value.boolean == rhs.m_value.boolean;
5910  }
5912  {
5913  return lhs.m_value.number_integer == rhs.m_value.number_integer;
5914  }
5916  {
5917  return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned;
5918  }
5919  case value_t::number_float:
5920  {
5921  return lhs.m_value.number_float == rhs.m_value.number_float;
5922  }
5923  default:
5924  {
5925  return false;
5926  }
5927  }
5928  }
5929  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
5930  {
5931  return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float;
5932  }
5933  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
5934  {
5935  return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer);
5936  }
5937  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
5938  {
5939  return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float;
5940  }
5941  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
5942  {
5943  return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned);
5944  }
5945  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
5946  {
5947  return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer;
5948  }
5949  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
5950  {
5951  return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned);
5952  }
5953 
5954  return false;
5955  }
5956 
5961  template<typename ScalarType, typename std::enable_if<
5962  std::is_scalar<ScalarType>::value, int>::type = 0>
5963  friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
5964  {
5965  return (lhs == basic_json(rhs));
5966  }
5967 
5972  template<typename ScalarType, typename std::enable_if<
5973  std::is_scalar<ScalarType>::value, int>::type = 0>
5974  friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
5975  {
5976  return (basic_json(lhs) == rhs);
5977  }
5978 
5995  friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
5996  {
5997  return not (lhs == rhs);
5998  }
5999 
6004  template<typename ScalarType, typename std::enable_if<
6005  std::is_scalar<ScalarType>::value, int>::type = 0>
6006  friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
6007  {
6008  return (lhs != basic_json(rhs));
6009  }
6010 
6015  template<typename ScalarType, typename std::enable_if<
6016  std::is_scalar<ScalarType>::value, int>::type = 0>
6017  friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
6018  {
6019  return (basic_json(lhs) != rhs);
6020  }
6021 
6046  friend bool operator<(const_reference lhs, const_reference rhs) noexcept
6047  {
6048  const auto lhs_type = lhs.type();
6049  const auto rhs_type = rhs.type();
6050 
6051  if (lhs_type == rhs_type)
6052  {
6053  switch (lhs_type)
6054  {
6055  case value_t::array:
6056  {
6057  return *lhs.m_value.array < *rhs.m_value.array;
6058  }
6059  case value_t::object:
6060  {
6061  return *lhs.m_value.object < *rhs.m_value.object;
6062  }
6063  case value_t::null:
6064  {
6065  return false;
6066  }
6067  case value_t::string:
6068  {
6069  return *lhs.m_value.string < *rhs.m_value.string;
6070  }
6071  case value_t::boolean:
6072  {
6073  return lhs.m_value.boolean < rhs.m_value.boolean;
6074  }
6076  {
6077  return lhs.m_value.number_integer < rhs.m_value.number_integer;
6078  }
6080  {
6081  return lhs.m_value.number_unsigned < rhs.m_value.number_unsigned;
6082  }
6083  case value_t::number_float:
6084  {
6085  return lhs.m_value.number_float < rhs.m_value.number_float;
6086  }
6087  default:
6088  {
6089  return false;
6090  }
6091  }
6092  }
6093  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
6094  {
6095  return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
6096  }
6097  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
6098  {
6099  return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
6100  }
6101  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
6102  {
6103  return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
6104  }
6105  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
6106  {
6107  return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
6108  }
6109  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
6110  {
6111  return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
6112  }
6113  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
6114  {
6115  return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
6116  }
6117 
6118  // We only reach this line if we cannot compare values. In that case,
6119  // we compare types. Note we have to call the operator explicitly,
6120  // because MSVC has problems otherwise.
6121  return operator<(lhs_type, rhs_type);
6122  }
6123 
6141  friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
6142  {
6143  return not (rhs < lhs);
6144  }
6145 
6163  friend bool operator>(const_reference lhs, const_reference rhs) noexcept
6164  {
6165  return not (lhs <= rhs);
6166  }
6167 
6185  friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
6186  {
6187  return not (lhs < rhs);
6188  }
6189 
6191 
6192 
6194  // serialization //
6196 
6199 
6222  friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
6223  {
6224  // read width member and use it as indentation parameter if nonzero
6225  const bool pretty_print = (o.width() > 0);
6226  const auto indentation = (pretty_print ? o.width() : 0);
6227 
6228  // reset width to 0 for subsequent calls to this stream
6229  o.width(0);
6230 
6231  // do the actual serialization
6232  j.dump(o, pretty_print, static_cast<unsigned int>(indentation));
6233 
6234  return o;
6235  }
6236 
6241  friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
6242  {
6243  return o << j;
6244  }
6245 
6247 
6248 
6250  // deserialization //
6252 
6255 
6283  template<class T, std::size_t N>
6284  static basic_json parse(T (&array)[N],
6285  const parser_callback_t cb = nullptr)
6286  {
6287  // delegate the call to the iterator-range parse overload
6288  return parse(std::begin(array), std::end(array), cb);
6289  }
6290 
6318  template<typename CharT, typename std::enable_if<
6319  std::is_pointer<CharT>::value and
6320  std::is_integral<typename std::remove_pointer<CharT>::type>::value and
6321  sizeof(typename std::remove_pointer<CharT>::type) == 1, int>::type = 0>
6322  static basic_json parse(const CharT s,
6323  const parser_callback_t cb = nullptr)
6324  {
6325  return parser(reinterpret_cast<const char*>(s), cb).parse();
6326  }
6327 
6352  static basic_json parse(std::istream& i,
6353  const parser_callback_t cb = nullptr)
6354  {
6355  return parser(i, cb).parse();
6356  }
6357 
6361  static basic_json parse(std::istream&& i,
6362  const parser_callback_t cb = nullptr)
6363  {
6364  return parser(i, cb).parse();
6365  }
6366 
6408  template<class IteratorType, typename std::enable_if<
6409  std::is_base_of<
6410  std::random_access_iterator_tag,
6411  typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
6412  static basic_json parse(IteratorType first, IteratorType last,
6413  const parser_callback_t cb = nullptr)
6414  {
6415  // assertion to check that the iterator range is indeed contiguous,
6416  // see http://stackoverflow.com/a/35008842/266378 for more discussion
6417  assert(std::accumulate(first, last, std::pair<bool, int>(true, 0),
6418  [&first](std::pair<bool, int> res, decltype(*first) val)
6419  {
6420  res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
6421  return res;
6422  }).first);
6423 
6424  // assertion to check that each element is 1 byte long
6425  static_assert(sizeof(typename std::iterator_traits<IteratorType>::value_type) == 1,
6426  "each element in the iterator range must have the size of 1 byte");
6427 
6428  // if iterator range is empty, create a parser with an empty string
6429  // to generate "unexpected EOF" error message
6430  if (std::distance(first, last) <= 0)
6431  {
6432  return parser("").parse();
6433  }
6434 
6435  return parser(first, last, cb).parse();
6436  }
6437 
6478  template<class ContiguousContainer, typename std::enable_if<
6479  not std::is_pointer<ContiguousContainer>::value and
6480  std::is_base_of<
6481  std::random_access_iterator_tag,
6482  typename std::iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value
6483  , int>::type = 0>
6484  static basic_json parse(const ContiguousContainer& c,
6485  const parser_callback_t cb = nullptr)
6486  {
6487  // delegate the call to the iterator-range parse overload
6488  return parse(std::begin(c), std::end(c), cb);
6489  }
6490 
6514  friend std::istream& operator<<(basic_json& j, std::istream& i)
6515  {
6516  j = parser(i).parse();
6517  return i;
6518  }
6519 
6524  friend std::istream& operator>>(std::istream& i, basic_json& j)
6525  {
6526  j = parser(i).parse();
6527  return i;
6528  }
6529 
6531 
6533  // binary serialization/deserialization //
6535 
6538 
6539  private:
6545  template<typename T>
6546  static void add_to_vector(std::vector<uint8_t>& vec, size_t bytes, const T number)
6547  {
6548  assert(bytes == 1 or bytes == 2 or bytes == 4 or bytes == 8);
6549 
6550  switch (bytes)
6551  {
6552  case 8:
6553  {
6554  vec.push_back(static_cast<uint8_t>((static_cast<uint64_t>(number) >> 070) & 0xff));
6555  vec.push_back(static_cast<uint8_t>((static_cast<uint64_t>(number) >> 060) & 0xff));
6556  vec.push_back(static_cast<uint8_t>((static_cast<uint64_t>(number) >> 050) & 0xff));
6557  vec.push_back(static_cast<uint8_t>((static_cast<uint64_t>(number) >> 040) & 0xff));
6558  vec.push_back(static_cast<uint8_t>((number >> 030) & 0xff));
6559  vec.push_back(static_cast<uint8_t>((number >> 020) & 0xff));
6560  vec.push_back(static_cast<uint8_t>((number >> 010) & 0xff));
6561  vec.push_back(static_cast<uint8_t>(number & 0xff));
6562  break;
6563  }
6564 
6565  case 4:
6566  {
6567  vec.push_back(static_cast<uint8_t>((number >> 030) & 0xff));
6568  vec.push_back(static_cast<uint8_t>((number >> 020) & 0xff));
6569  vec.push_back(static_cast<uint8_t>((number >> 010) & 0xff));
6570  vec.push_back(static_cast<uint8_t>(number & 0xff));
6571  break;
6572  }
6573 
6574  case 2:
6575  {
6576  vec.push_back(static_cast<uint8_t>((number >> 010) & 0xff));
6577  vec.push_back(static_cast<uint8_t>(number & 0xff));
6578  break;
6579  }
6580 
6581  case 1:
6582  {
6583  vec.push_back(static_cast<uint8_t>(number & 0xff));
6584  break;
6585  }
6586  }
6587  }
6588 
6625  template<typename T>
6626  static T get_from_vector(const std::vector<uint8_t>& vec, const size_t current_index)
6627  {
6628  if (current_index + sizeof(T) + 1 > vec.size())
6629  {
6630  JSON_THROW(std::out_of_range("cannot read " + std::to_string(sizeof(T)) + " bytes from vector"));
6631  }
6632 
6633  T result;
6634  auto* ptr = reinterpret_cast<uint8_t*>(&result);
6635  for (size_t i = 0; i < sizeof(T); ++i)
6636  {
6637  *ptr++ = vec[current_index + sizeof(T) - i];
6638  }
6639  return result;
6640  }
6641 
6652  static void to_msgpack_internal(const basic_json& j, std::vector<uint8_t>& v)
6653  {
6654  switch (j.type())
6655  {
6656  case value_t::null:
6657  {
6658  // nil
6659  v.push_back(0xc0);
6660  break;
6661  }
6662 
6663  case value_t::boolean:
6664  {
6665  // true and false
6666  v.push_back(j.m_value.boolean ? 0xc3 : 0xc2);
6667  break;
6668  }
6669 
6671  {
6672  if (j.m_value.number_integer >= 0)
6673  {
6674  // MessagePack does not differentiate between positive
6675  // signed integers and unsigned integers. Therefore, we
6676  // used the code from the value_t::number_unsigned case
6677  // here.
6678  if (j.m_value.number_unsigned < 128)
6679  {
6680  // positive fixnum
6681  add_to_vector(v, 1, j.m_value.number_unsigned);
6682  }
6683  else if (j.m_value.number_unsigned <= std::numeric_limits<uint8_t>::max())
6684  {
6685  // uint 8
6686  v.push_back(0xcc);
6687  add_to_vector(v, 1, j.m_value.number_unsigned);
6688  }
6689  else if (j.m_value.number_unsigned <= std::numeric_limits<uint16_t>::max())
6690  {
6691  // uint 16
6692  v.push_back(0xcd);
6693  add_to_vector(v, 2, j.m_value.number_unsigned);
6694  }
6695  else if (j.m_value.number_unsigned <= std::numeric_limits<uint32_t>::max())
6696  {
6697  // uint 32
6698  v.push_back(0xce);
6699  add_to_vector(v, 4, j.m_value.number_unsigned);
6700  }
6701  else if (j.m_value.number_unsigned <= std::numeric_limits<uint64_t>::max())
6702  {
6703  // uint 64
6704  v.push_back(0xcf);
6705  add_to_vector(v, 8, j.m_value.number_unsigned);
6706  }
6707  }
6708  else
6709  {
6710  if (j.m_value.number_integer >= -32)
6711  {
6712  // negative fixnum
6713  add_to_vector(v, 1, j.m_value.number_integer);
6714  }
6715  else if (j.m_value.number_integer >= std::numeric_limits<int8_t>::min() and j.m_value.number_integer <= std::numeric_limits<int8_t>::max())
6716  {
6717  // int 8
6718  v.push_back(0xd0);
6719  add_to_vector(v, 1, j.m_value.number_integer);
6720  }
6721  else if (j.m_value.number_integer >= std::numeric_limits<int16_t>::min() and j.m_value.number_integer <= std::numeric_limits<int16_t>::max())
6722  {
6723  // int 16
6724  v.push_back(0xd1);
6725  add_to_vector(v, 2, j.m_value.number_integer);
6726  }
6727  else if (j.m_value.number_integer >= std::numeric_limits<int32_t>::min() and j.m_value.number_integer <= std::numeric_limits<int32_t>::max())
6728  {
6729  // int 32
6730  v.push_back(0xd2);
6731  add_to_vector(v, 4, j.m_value.number_integer);
6732  }
6733  else if (j.m_value.number_integer >= std::numeric_limits<int64_t>::min() and j.m_value.number_integer <= std::numeric_limits<int64_t>::max())
6734  {
6735  // int 64
6736  v.push_back(0xd3);
6737  add_to_vector(v, 8, j.m_value.number_integer);
6738  }
6739  }
6740  break;
6741  }
6742 
6744  {
6745  if (j.m_value.number_unsigned < 128)
6746  {
6747  // positive fixnum
6748  add_to_vector(v, 1, j.m_value.number_unsigned);
6749  }
6750  else if (j.m_value.number_unsigned <= std::numeric_limits<uint8_t>::max())
6751  {
6752  // uint 8
6753  v.push_back(0xcc);
6754  add_to_vector(v, 1, j.m_value.number_unsigned);
6755  }
6756  else if (j.m_value.number_unsigned <= std::numeric_limits<uint16_t>::max())
6757  {
6758  // uint 16
6759  v.push_back(0xcd);
6760  add_to_vector(v, 2, j.m_value.number_unsigned);
6761  }
6762  else if (j.m_value.number_unsigned <= std::numeric_limits<uint32_t>::max())
6763  {
6764  // uint 32
6765  v.push_back(0xce);
6766  add_to_vector(v, 4, j.m_value.number_unsigned);
6767  }
6768  else if (j.m_value.number_unsigned <= std::numeric_limits<uint64_t>::max())
6769  {
6770  // uint 64
6771  v.push_back(0xcf);
6772  add_to_vector(v, 8, j.m_value.number_unsigned);
6773  }
6774  break;
6775  }
6776 
6777  case value_t::number_float:
6778  {
6779  // float 64
6780  v.push_back(0xcb);
6781  const auto* helper = reinterpret_cast<const uint8_t*>(&(j.m_value.number_float));
6782  for (size_t i = 0; i < 8; ++i)
6783  {
6784  v.push_back(helper[7 - i]);
6785  }
6786  break;
6787  }
6788 
6789  case value_t::string:
6790  {
6791  const auto N = j.m_value.string->size();
6792  if (N <= 31)
6793  {
6794  // fixstr
6795  v.push_back(static_cast<uint8_t>(0xa0 | N));
6796  }
6797  else if (N <= 255)
6798  {
6799  // str 8
6800  v.push_back(0xd9);
6801  add_to_vector(v, 1, N);
6802  }
6803  else if (N <= 65535)
6804  {
6805  // str 16
6806  v.push_back(0xda);
6807  add_to_vector(v, 2, N);
6808  }
6809  else if (N <= 4294967295)
6810  {
6811  // str 32
6812  v.push_back(0xdb);
6813  add_to_vector(v, 4, N);
6814  }
6815 
6816  // append string
6817  std::copy(j.m_value.string->begin(), j.m_value.string->end(),
6818  std::back_inserter(v));
6819  break;
6820  }
6821 
6822  case value_t::array:
6823  {
6824  const auto N = j.m_value.array->size();
6825  if (N <= 15)
6826  {
6827  // fixarray
6828  v.push_back(static_cast<uint8_t>(0x90 | N));
6829  }
6830  else if (N <= 0xffff)
6831  {
6832  // array 16
6833  v.push_back(0xdc);
6834  add_to_vector(v, 2, N);
6835  }
6836  else if (N <= 0xffffffff)
6837  {
6838  // array 32
6839  v.push_back(0xdd);
6840  add_to_vector(v, 4, N);
6841  }
6842 
6843  // append each element
6844  for (const auto& el : *j.m_value.array)
6845  {
6846  to_msgpack_internal(el, v);
6847  }
6848  break;
6849  }
6850 
6851  case value_t::object:
6852  {
6853  const auto N = j.m_value.object->size();
6854  if (N <= 15)
6855  {
6856  // fixmap
6857  v.push_back(static_cast<uint8_t>(0x80 | (N & 0xf)));
6858  }
6859  else if (N <= 65535)
6860  {
6861  // map 16
6862  v.push_back(0xde);
6863  add_to_vector(v, 2, N);
6864  }
6865  else if (N <= 4294967295)
6866  {
6867  // map 32
6868  v.push_back(0xdf);
6869  add_to_vector(v, 4, N);
6870  }
6871 
6872  // append each element
6873  for (const auto& el : *j.m_value.object)
6874  {
6875  to_msgpack_internal(el.first, v);
6876  to_msgpack_internal(el.second, v);
6877  }
6878  break;
6879  }
6880 
6881  default:
6882  {
6883  break;
6884  }
6885  }
6886  }
6887 
6898  static void to_cbor_internal(const basic_json& j, std::vector<uint8_t>& v)
6899  {
6900  switch (j.type())
6901  {
6902  case value_t::null:
6903  {
6904  v.push_back(0xf6);
6905  break;
6906  }
6907 
6908  case value_t::boolean:
6909  {
6910  v.push_back(j.m_value.boolean ? 0xf5 : 0xf4);
6911  break;
6912  }
6913 
6915  {
6916  if (j.m_value.number_integer >= 0)
6917  {
6918  // CBOR does not differentiate between positive signed
6919  // integers and unsigned integers. Therefore, we used the
6920  // code from the value_t::number_unsigned case here.
6921  if (j.m_value.number_integer <= 0x17)
6922  {
6923  add_to_vector(v, 1, j.m_value.number_integer);
6924  }
6925  else if (j.m_value.number_integer <= std::numeric_limits<uint8_t>::max())
6926  {
6927  v.push_back(0x18);
6928  // one-byte uint8_t
6929  add_to_vector(v, 1, j.m_value.number_integer);
6930  }
6931  else if (j.m_value.number_integer <= std::numeric_limits<uint16_t>::max())
6932  {
6933  v.push_back(0x19);
6934  // two-byte uint16_t
6935  add_to_vector(v, 2, j.m_value.number_integer);
6936  }
6937  else if (j.m_value.number_integer <= std::numeric_limits<uint32_t>::max())
6938  {
6939  v.push_back(0x1a);
6940  // four-byte uint32_t
6941  add_to_vector(v, 4, j.m_value.number_integer);
6942  }
6943  else
6944  {
6945  v.push_back(0x1b);
6946  // eight-byte uint64_t
6947  add_to_vector(v, 8, j.m_value.number_integer);
6948  }
6949  }
6950  else
6951  {
6952  // The conversions below encode the sign in the first
6953  // byte, and the value is converted to a positive number.
6954  const auto positive_number = -1 - j.m_value.number_integer;
6955  if (j.m_value.number_integer >= -24)
6956  {
6957  v.push_back(static_cast<uint8_t>(0x20 + positive_number));
6958  }
6959  else if (positive_number <= std::numeric_limits<uint8_t>::max())
6960  {
6961  // int 8
6962  v.push_back(0x38);
6963  add_to_vector(v, 1, positive_number);
6964  }
6965  else if (positive_number <= std::numeric_limits<uint16_t>::max())
6966  {
6967  // int 16
6968  v.push_back(0x39);
6969  add_to_vector(v, 2, positive_number);
6970  }
6971  else if (positive_number <= std::numeric_limits<uint32_t>::max())
6972  {
6973  // int 32
6974  v.push_back(0x3a);
6975  add_to_vector(v, 4, positive_number);
6976  }
6977  else
6978  {
6979  // int 64
6980  v.push_back(0x3b);
6981  add_to_vector(v, 8, positive_number);
6982  }
6983  }
6984  break;
6985  }
6986 
6988  {
6989  if (j.m_value.number_unsigned <= 0x17)
6990  {
6991  v.push_back(static_cast<uint8_t>(j.m_value.number_unsigned));
6992  }
6993  else if (j.m_value.number_unsigned <= 0xff)
6994  {
6995  v.push_back(0x18);
6996  // one-byte uint8_t
6997  add_to_vector(v, 1, j.m_value.number_unsigned);
6998  }
6999  else if (j.m_value.number_unsigned <= 0xffff)
7000  {
7001  v.push_back(0x19);
7002  // two-byte uint16_t
7003  add_to_vector(v, 2, j.m_value.number_unsigned);
7004  }
7005  else if (j.m_value.number_unsigned <= 0xffffffff)
7006  {
7007  v.push_back(0x1a);
7008  // four-byte uint32_t
7009  add_to_vector(v, 4, j.m_value.number_unsigned);
7010  }
7011  else if (j.m_value.number_unsigned <= 0xffffffffffffffff)
7012  {
7013  v.push_back(0x1b);
7014  // eight-byte uint64_t
7015  add_to_vector(v, 8, j.m_value.number_unsigned);
7016  }
7017  break;
7018  }
7019 
7020  case value_t::number_float:
7021  {
7022  // Double-Precision Float
7023  v.push_back(0xfb);
7024  const auto* helper = reinterpret_cast<const uint8_t*>(&(j.m_value.number_float));
7025  for (size_t i = 0; i < 8; ++i)
7026  {
7027  v.push_back(helper[7 - i]);
7028  }
7029  break;
7030  }
7031 
7032  case value_t::string:
7033  {
7034  const auto N = j.m_value.string->size();
7035  if (N <= 0x17)
7036  {
7037  v.push_back(0x60 + static_cast<uint8_t>(N)); // 1 byte for string + size
7038  }
7039  else if (N <= 0xff)
7040  {
7041  v.push_back(0x78); // one-byte uint8_t for N
7042  add_to_vector(v, 1, N);
7043  }
7044  else if (N <= 0xffff)
7045  {
7046  v.push_back(0x79); // two-byte uint16_t for N
7047  add_to_vector(v, 2, N);
7048  }
7049  else if (N <= 0xffffffff)
7050  {
7051  v.push_back(0x7a); // four-byte uint32_t for N
7052  add_to_vector(v, 4, N);
7053  }
7054  // LCOV_EXCL_START
7055  else if (N <= 0xffffffffffffffff)
7056  {
7057  v.push_back(0x7b); // eight-byte uint64_t for N
7058  add_to_vector(v, 8, N);
7059  }
7060  // LCOV_EXCL_STOP
7061 
7062  // append string
7063  std::copy(j.m_value.string->begin(), j.m_value.string->end(),
7064  std::back_inserter(v));
7065  break;
7066  }
7067 
7068  case value_t::array:
7069  {
7070  const auto N = j.m_value.array->size();
7071  if (N <= 0x17)
7072  {
7073  v.push_back(0x80 + static_cast<uint8_t>(N)); // 1 byte for array + size
7074  }
7075  else if (N <= 0xff)
7076  {
7077  v.push_back(0x98); // one-byte uint8_t for N
7078  add_to_vector(v, 1, N);
7079  }
7080  else if (N <= 0xffff)
7081  {
7082  v.push_back(0x99); // two-byte uint16_t for N
7083  add_to_vector(v, 2, N);
7084  }
7085  else if (N <= 0xffffffff)
7086  {
7087  v.push_back(0x9a); // four-byte uint32_t for N
7088  add_to_vector(v, 4, N);
7089  }
7090  // LCOV_EXCL_START
7091  else if (N <= 0xffffffffffffffff)
7092  {
7093  v.push_back(0x9b); // eight-byte uint64_t for N
7094  add_to_vector(v, 8, N);
7095  }
7096  // LCOV_EXCL_STOP
7097 
7098  // append each element
7099  for (const auto& el : *j.m_value.array)
7100  {
7101  to_cbor_internal(el, v);
7102  }
7103  break;
7104  }
7105 
7106  case value_t::object:
7107  {
7108  const auto N = j.m_value.object->size();
7109  if (N <= 0x17)
7110  {
7111  v.push_back(0xa0 + static_cast<uint8_t>(N)); // 1 byte for object + size
7112  }
7113  else if (N <= 0xff)
7114  {
7115  v.push_back(0xb8);
7116  add_to_vector(v, 1, N); // one-byte uint8_t for N
7117  }
7118  else if (N <= 0xffff)
7119  {
7120  v.push_back(0xb9);
7121  add_to_vector(v, 2, N); // two-byte uint16_t for N
7122  }
7123  else if (N <= 0xffffffff)
7124  {
7125  v.push_back(0xba);
7126  add_to_vector(v, 4, N); // four-byte uint32_t for N
7127  }
7128  // LCOV_EXCL_START
7129  else if (N <= 0xffffffffffffffff)
7130  {
7131  v.push_back(0xbb);
7132  add_to_vector(v, 8, N); // eight-byte uint64_t for N
7133  }
7134  // LCOV_EXCL_STOP
7135 
7136  // append each element
7137  for (const auto& el : *j.m_value.object)
7138  {
7139  to_cbor_internal(el.first, v);
7140  to_cbor_internal(el.second, v);
7141  }
7142  break;
7143  }
7144 
7145  default:
7146  {
7147  break;
7148  }
7149  }
7150  }
7151 
7152 
7153  /*
7154  @brief checks if given lengths do not exceed the size of a given vector
7155 
7156  To secure the access to the byte vector during CBOR/MessagePack
7157  deserialization, bytes are copied from the vector into buffers. This
7158  function checks if the number of bytes to copy (@a len) does not exceed
7159  the size @s size of the vector. Additionally, an @a offset is given from
7160  where to start reading the bytes.
7161 
7162  This function checks whether reading the bytes is safe; that is, offset is
7163  a valid index in the vector, offset+len
7164 
7165  @param[in] size size of the byte vector
7166  @param[in] len number of bytes to read
7167  @param[in] offset offset where to start reading
7168 
7169  vec: x x x x x X X X X X
7170  ^ ^ ^
7171  0 offset len
7172 
7173  @throws out_of_range if `len > v.size()`
7174  */
7175  static void check_length(const size_t size, const size_t len, const size_t offset)
7176  {
7177  // simple case: requested length is greater than the vector's length
7178  if (len > size or offset > size)
7179  {
7180  JSON_THROW(std::out_of_range("len out of range"));
7181  }
7182 
7183  // second case: adding offset would result in overflow
7184  if ((size > (std::numeric_limits<size_t>::max() - offset)))
7185  {
7186  JSON_THROW(std::out_of_range("len+offset out of range"));
7187  }
7188 
7189  // last case: reading past the end of the vector
7190  if (len + offset > size)
7191  {
7192  JSON_THROW(std::out_of_range("len+offset out of range"));
7193  }
7194  }
7195 
7210  static basic_json from_msgpack_internal(const std::vector<uint8_t>& v, size_t& idx)
7211  {
7212  // make sure reading 1 byte is safe
7213  check_length(v.size(), 1, idx);
7214 
7215  // store and increment index
7216  const size_t current_idx = idx++;
7217 
7218  if (v[current_idx] <= 0xbf)
7219  {
7220  if (v[current_idx] <= 0x7f) // positive fixint
7221  {
7222  return v[current_idx];
7223  }
7224  if (v[current_idx] <= 0x8f) // fixmap
7225  {
7226  basic_json result = value_t::object;
7227  const size_t len = v[current_idx] & 0x0f;
7228  for (size_t i = 0; i < len; ++i)
7229  {
7230  std::string key = from_msgpack_internal(v, idx);
7231  result[key] = from_msgpack_internal(v, idx);
7232  }
7233  return result;
7234  }
7235  else if (v[current_idx] <= 0x9f) // fixarray
7236  {
7237  basic_json result = value_t::array;
7238  const size_t len = v[current_idx] & 0x0f;
7239  for (size_t i = 0; i < len; ++i)
7240  {
7241  result.push_back(from_msgpack_internal(v, idx));
7242  }
7243  return result;
7244  }
7245  else // fixstr
7246  {
7247  const size_t len = v[current_idx] & 0x1f;
7248  const size_t offset = current_idx + 1;
7249  idx += len; // skip content bytes
7250  check_length(v.size(), len, offset);
7251  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7252  }
7253  }
7254  else if (v[current_idx] >= 0xe0) // negative fixint
7255  {
7256  return static_cast<int8_t>(v[current_idx]);
7257  }
7258  else
7259  {
7260  switch (v[current_idx])
7261  {
7262  case 0xc0: // nil
7263  {
7264  return value_t::null;
7265  }
7266 
7267  case 0xc2: // false
7268  {
7269  return false;
7270  }
7271 
7272  case 0xc3: // true
7273  {
7274  return true;
7275  }
7276 
7277  case 0xca: // float 32
7278  {
7279  // copy bytes in reverse order into the double variable
7280  float res;
7281  for (size_t byte = 0; byte < sizeof(float); ++byte)
7282  {
7283  reinterpret_cast<uint8_t*>(&res)[sizeof(float) - byte - 1] = v.at(current_idx + 1 + byte);
7284  }
7285  idx += sizeof(float); // skip content bytes
7286  return res;
7287  }
7288 
7289  case 0xcb: // float 64
7290  {
7291  // copy bytes in reverse order into the double variable
7292  double res;
7293  for (size_t byte = 0; byte < sizeof(double); ++byte)
7294  {
7295  reinterpret_cast<uint8_t*>(&res)[sizeof(double) - byte - 1] = v.at(current_idx + 1 + byte);
7296  }
7297  idx += sizeof(double); // skip content bytes
7298  return res;
7299  }
7300 
7301  case 0xcc: // uint 8
7302  {
7303  idx += 1; // skip content byte
7304  return get_from_vector<uint8_t>(v, current_idx);
7305  }
7306 
7307  case 0xcd: // uint 16
7308  {
7309  idx += 2; // skip 2 content bytes
7310  return get_from_vector<uint16_t>(v, current_idx);
7311  }
7312 
7313  case 0xce: // uint 32
7314  {
7315  idx += 4; // skip 4 content bytes
7316  return get_from_vector<uint32_t>(v, current_idx);
7317  }
7318 
7319  case 0xcf: // uint 64
7320  {
7321  idx += 8; // skip 8 content bytes
7322  return get_from_vector<uint64_t>(v, current_idx);
7323  }
7324 
7325  case 0xd0: // int 8
7326  {
7327  idx += 1; // skip content byte
7328  return get_from_vector<int8_t>(v, current_idx);
7329  }
7330 
7331  case 0xd1: // int 16
7332  {
7333  idx += 2; // skip 2 content bytes
7334  return get_from_vector<int16_t>(v, current_idx);
7335  }
7336 
7337  case 0xd2: // int 32
7338  {
7339  idx += 4; // skip 4 content bytes
7340  return get_from_vector<int32_t>(v, current_idx);
7341  }
7342 
7343  case 0xd3: // int 64
7344  {
7345  idx += 8; // skip 8 content bytes
7346  return get_from_vector<int64_t>(v, current_idx);
7347  }
7348 
7349  case 0xd9: // str 8
7350  {
7351  const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx));
7352  const size_t offset = current_idx + 2;
7353  idx += len + 1; // skip size byte + content bytes
7354  check_length(v.size(), len, offset);
7355  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7356  }
7357 
7358  case 0xda: // str 16
7359  {
7360  const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx));
7361  const size_t offset = current_idx + 3;
7362  idx += len + 2; // skip 2 size bytes + content bytes
7363  check_length(v.size(), len, offset);
7364  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7365  }
7366 
7367  case 0xdb: // str 32
7368  {
7369  const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx));
7370  const size_t offset = current_idx + 5;
7371  idx += len + 4; // skip 4 size bytes + content bytes
7372  check_length(v.size(), len, offset);
7373  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7374  }
7375 
7376  case 0xdc: // array 16
7377  {
7378  basic_json result = value_t::array;
7379  const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx));
7380  idx += 2; // skip 2 size bytes
7381  for (size_t i = 0; i < len; ++i)
7382  {
7383  result.push_back(from_msgpack_internal(v, idx));
7384  }
7385  return result;
7386  }
7387 
7388  case 0xdd: // array 32
7389  {
7390  basic_json result = value_t::array;
7391  const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx));
7392  idx += 4; // skip 4 size bytes
7393  for (size_t i = 0; i < len; ++i)
7394  {
7395  result.push_back(from_msgpack_internal(v, idx));
7396  }
7397  return result;
7398  }
7399 
7400  case 0xde: // map 16
7401  {
7402  basic_json result = value_t::object;
7403  const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx));
7404  idx += 2; // skip 2 size bytes
7405  for (size_t i = 0; i < len; ++i)
7406  {
7407  std::string key = from_msgpack_internal(v, idx);
7408  result[key] = from_msgpack_internal(v, idx);
7409  }
7410  return result;
7411  }
7412 
7413  case 0xdf: // map 32
7414  {
7415  basic_json result = value_t::object;
7416  const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx));
7417  idx += 4; // skip 4 size bytes
7418  for (size_t i = 0; i < len; ++i)
7419  {
7420  std::string key = from_msgpack_internal(v, idx);
7421  result[key] = from_msgpack_internal(v, idx);
7422  }
7423  return result;
7424  }
7425 
7426  default:
7427  {
7428  JSON_THROW(std::invalid_argument("error parsing a msgpack @ " + std::to_string(current_idx) + ": " + std::to_string(static_cast<int>(v[current_idx]))));
7429  }
7430  }
7431  }
7432  }
7433 
7448  static basic_json from_cbor_internal(const std::vector<uint8_t>& v, size_t& idx)
7449  {
7450  // store and increment index
7451  const size_t current_idx = idx++;
7452 
7453  switch (v.at(current_idx))
7454  {
7455  // Integer 0x00..0x17 (0..23)
7456  case 0x00:
7457  case 0x01:
7458  case 0x02:
7459  case 0x03:
7460  case 0x04:
7461  case 0x05:
7462  case 0x06:
7463  case 0x07:
7464  case 0x08:
7465  case 0x09:
7466  case 0x0a:
7467  case 0x0b:
7468  case 0x0c:
7469  case 0x0d:
7470  case 0x0e:
7471  case 0x0f:
7472  case 0x10:
7473  case 0x11:
7474  case 0x12:
7475  case 0x13:
7476  case 0x14:
7477  case 0x15:
7478  case 0x16:
7479  case 0x17:
7480  {
7481  return v[current_idx];
7482  }
7483 
7484  case 0x18: // Unsigned integer (one-byte uint8_t follows)
7485  {
7486  idx += 1; // skip content byte
7487  return get_from_vector<uint8_t>(v, current_idx);
7488  }
7489 
7490  case 0x19: // Unsigned integer (two-byte uint16_t follows)
7491  {
7492  idx += 2; // skip 2 content bytes
7493  return get_from_vector<uint16_t>(v, current_idx);
7494  }
7495 
7496  case 0x1a: // Unsigned integer (four-byte uint32_t follows)
7497  {
7498  idx += 4; // skip 4 content bytes
7499  return get_from_vector<uint32_t>(v, current_idx);
7500  }
7501 
7502  case 0x1b: // Unsigned integer (eight-byte uint64_t follows)
7503  {
7504  idx += 8; // skip 8 content bytes
7505  return get_from_vector<uint64_t>(v, current_idx);
7506  }
7507 
7508  // Negative integer -1-0x00..-1-0x17 (-1..-24)
7509  case 0x20:
7510  case 0x21:
7511  case 0x22:
7512  case 0x23:
7513  case 0x24:
7514  case 0x25:
7515  case 0x26:
7516  case 0x27:
7517  case 0x28:
7518  case 0x29:
7519  case 0x2a:
7520  case 0x2b:
7521  case 0x2c:
7522  case 0x2d:
7523  case 0x2e:
7524  case 0x2f:
7525  case 0x30:
7526  case 0x31:
7527  case 0x32:
7528  case 0x33:
7529  case 0x34:
7530  case 0x35:
7531  case 0x36:
7532  case 0x37:
7533  {
7534  return static_cast<int8_t>(0x20 - 1 - v[current_idx]);
7535  }
7536 
7537  case 0x38: // Negative integer (one-byte uint8_t follows)
7538  {
7539  idx += 1; // skip content byte
7540  // must be uint8_t !
7541  return static_cast<number_integer_t>(-1) - get_from_vector<uint8_t>(v, current_idx);
7542  }
7543 
7544  case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
7545  {
7546  idx += 2; // skip 2 content bytes
7547  return static_cast<number_integer_t>(-1) - get_from_vector<uint16_t>(v, current_idx);
7548  }
7549 
7550  case 0x3a: // Negative integer -1-n (four-byte uint32_t follows)
7551  {
7552  idx += 4; // skip 4 content bytes
7553  return static_cast<number_integer_t>(-1) - get_from_vector<uint32_t>(v, current_idx);
7554  }
7555 
7556  case 0x3b: // Negative integer -1-n (eight-byte uint64_t follows)
7557  {
7558  idx += 8; // skip 8 content bytes
7559  return static_cast<number_integer_t>(-1) - static_cast<number_integer_t>(get_from_vector<uint64_t>(v, current_idx));
7560  }
7561 
7562  // UTF-8 string (0x00..0x17 bytes follow)
7563  case 0x60:
7564  case 0x61:
7565  case 0x62:
7566  case 0x63:
7567  case 0x64:
7568  case 0x65:
7569  case 0x66:
7570  case 0x67:
7571  case 0x68:
7572  case 0x69:
7573  case 0x6a:
7574  case 0x6b:
7575  case 0x6c:
7576  case 0x6d:
7577  case 0x6e:
7578  case 0x6f:
7579  case 0x70:
7580  case 0x71:
7581  case 0x72:
7582  case 0x73:
7583  case 0x74:
7584  case 0x75:
7585  case 0x76:
7586  case 0x77:
7587  {
7588  const auto len = static_cast<size_t>(v[current_idx] - 0x60);
7589  const size_t offset = current_idx + 1;
7590  idx += len; // skip content bytes
7591  check_length(v.size(), len, offset);
7592  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7593  }
7594 
7595  case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
7596  {
7597  const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx));
7598  const size_t offset = current_idx + 2;
7599  idx += len + 1; // skip size byte + content bytes
7600  check_length(v.size(), len, offset);
7601  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7602  }
7603 
7604  case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
7605  {
7606  const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx));
7607  const size_t offset = current_idx + 3;
7608  idx += len + 2; // skip 2 size bytes + content bytes
7609  check_length(v.size(), len, offset);
7610  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7611  }
7612 
7613  case 0x7a: // UTF-8 string (four-byte uint32_t for n follow)
7614  {
7615  const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx));
7616  const size_t offset = current_idx + 5;
7617  idx += len + 4; // skip 4 size bytes + content bytes
7618  check_length(v.size(), len, offset);
7619  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7620  }
7621 
7622  case 0x7b: // UTF-8 string (eight-byte uint64_t for n follow)
7623  {
7624  const auto len = static_cast<size_t>(get_from_vector<uint64_t>(v, current_idx));
7625  const size_t offset = current_idx + 9;
7626  idx += len + 8; // skip 8 size bytes + content bytes
7627  check_length(v.size(), len, offset);
7628  return std::string(reinterpret_cast<const char*>(v.data()) + offset, len);
7629  }
7630 
7631  case 0x7f: // UTF-8 string (indefinite length)
7632  {
7633  std::string result;
7634  while (v.at(idx) != 0xff)
7635  {
7636  string_t s = from_cbor_internal(v, idx);
7637  result += s;
7638  }
7639  // skip break byte (0xFF)
7640  idx += 1;
7641  return result;
7642  }
7643 
7644  // array (0x00..0x17 data items follow)
7645  case 0x80:
7646  case 0x81:
7647  case 0x82:
7648  case 0x83:
7649  case 0x84:
7650  case 0x85:
7651  case 0x86:
7652  case 0x87:
7653  case 0x88:
7654  case 0x89:
7655  case 0x8a:
7656  case 0x8b:
7657  case 0x8c:
7658  case 0x8d:
7659  case 0x8e:
7660  case 0x8f:
7661  case 0x90:
7662  case 0x91:
7663  case 0x92:
7664  case 0x93:
7665  case 0x94:
7666  case 0x95:
7667  case 0x96:
7668  case 0x97:
7669  {
7670  basic_json result = value_t::array;
7671  const auto len = static_cast<size_t>(v[current_idx] - 0x80);
7672  for (size_t i = 0; i < len; ++i)
7673  {
7674  result.push_back(from_cbor_internal(v, idx));
7675  }
7676  return result;
7677  }
7678 
7679  case 0x98: // array (one-byte uint8_t for n follows)
7680  {
7681  basic_json result = value_t::array;
7682  const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx));
7683  idx += 1; // skip 1 size byte
7684  for (size_t i = 0; i < len; ++i)
7685  {
7686  result.push_back(from_cbor_internal(v, idx));
7687  }
7688  return result;
7689  }
7690 
7691  case 0x99: // array (two-byte uint16_t for n follow)
7692  {
7693  basic_json result = value_t::array;
7694  const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx));
7695  idx += 2; // skip 4 size bytes
7696  for (size_t i = 0; i < len; ++i)
7697  {
7698  result.push_back(from_cbor_internal(v, idx));
7699  }
7700  return result;
7701  }
7702 
7703  case 0x9a: // array (four-byte uint32_t for n follow)
7704  {
7705  basic_json result = value_t::array;
7706  const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx));
7707  idx += 4; // skip 4 size bytes
7708  for (size_t i = 0; i < len; ++i)
7709  {
7710  result.push_back(from_cbor_internal(v, idx));
7711  }
7712  return result;
7713  }
7714 
7715  case 0x9b: // array (eight-byte uint64_t for n follow)
7716  {
7717  basic_json result = value_t::array;
7718  const auto len = static_cast<size_t>(get_from_vector<uint64_t>(v, current_idx));
7719  idx += 8; // skip 8 size bytes
7720  for (size_t i = 0; i < len; ++i)
7721  {
7722  result.push_back(from_cbor_internal(v, idx));
7723  }
7724  return result;
7725  }
7726 
7727  case 0x9f: // array (indefinite length)
7728  {
7729  basic_json result = value_t::array;
7730  while (v.at(idx) != 0xff)
7731  {
7732  result.push_back(from_cbor_internal(v, idx));
7733  }
7734  // skip break byte (0xFF)
7735  idx += 1;
7736  return result;
7737  }
7738 
7739  // map (0x00..0x17 pairs of data items follow)
7740  case 0xa0:
7741  case 0xa1:
7742  case 0xa2:
7743  case 0xa3:
7744  case 0xa4:
7745  case 0xa5:
7746  case 0xa6:
7747  case 0xa7:
7748  case 0xa8:
7749  case 0xa9:
7750  case 0xaa:
7751  case 0xab:
7752  case 0xac:
7753  case 0xad:
7754  case 0xae:
7755  case 0xaf:
7756  case 0xb0:
7757  case 0xb1:
7758  case 0xb2:
7759  case 0xb3:
7760  case 0xb4:
7761  case 0xb5:
7762  case 0xb6:
7763  case 0xb7:
7764  {
7765  basic_json result = value_t::object;
7766  const auto len = static_cast<size_t>(v[current_idx] - 0xa0);
7767  for (size_t i = 0; i < len; ++i)
7768  {
7769  std::string key = from_cbor_internal(v, idx);
7770  result[key] = from_cbor_internal(v, idx);
7771  }
7772  return result;
7773  }
7774 
7775  case 0xb8: // map (one-byte uint8_t for n follows)
7776  {
7777  basic_json result = value_t::object;
7778  const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx));
7779  idx += 1; // skip 1 size byte
7780  for (size_t i = 0; i < len; ++i)
7781  {
7782  std::string key = from_cbor_internal(v, idx);
7783  result[key] = from_cbor_internal(v, idx);
7784  }
7785  return result;
7786  }
7787 
7788  case 0xb9: // map (two-byte uint16_t for n follow)
7789  {
7790  basic_json result = value_t::object;
7791  const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx));
7792  idx += 2; // skip 2 size bytes
7793  for (size_t i = 0; i < len; ++i)
7794  {
7795  std::string key = from_cbor_internal(v, idx);
7796  result[key] = from_cbor_internal(v, idx);
7797  }
7798  return result;
7799  }
7800 
7801  case 0xba: // map (four-byte uint32_t for n follow)
7802  {
7803  basic_json result = value_t::object;
7804  const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx));
7805  idx += 4; // skip 4 size bytes
7806  for (size_t i = 0; i < len; ++i)
7807  {
7808  std::string key = from_cbor_internal(v, idx);
7809  result[key] = from_cbor_internal(v, idx);
7810  }
7811  return result;
7812  }
7813 
7814  case 0xbb: // map (eight-byte uint64_t for n follow)
7815  {
7816  basic_json result = value_t::object;
7817  const auto len = static_cast<size_t>(get_from_vector<uint64_t>(v, current_idx));
7818  idx += 8; // skip 8 size bytes
7819  for (size_t i = 0; i < len; ++i)
7820  {
7821  std::string key = from_cbor_internal(v, idx);
7822  result[key] = from_cbor_internal(v, idx);
7823  }
7824  return result;
7825  }
7826 
7827  case 0xbf: // map (indefinite length)
7828  {
7829  basic_json result = value_t::object;
7830  while (v.at(idx) != 0xff)
7831  {
7832  std::string key = from_cbor_internal(v, idx);
7833  result[key] = from_cbor_internal(v, idx);
7834  }
7835  // skip break byte (0xFF)
7836  idx += 1;
7837  return result;
7838  }
7839 
7840  case 0xf4: // false
7841  {
7842  return false;
7843  }
7844 
7845  case 0xf5: // true
7846  {
7847  return true;
7848  }
7849 
7850  case 0xf6: // null
7851  {
7852  return value_t::null;
7853  }
7854 
7855  case 0xf9: // Half-Precision Float (two-byte IEEE 754)
7856  {
7857  idx += 2; // skip two content bytes
7858 
7859  // code from RFC 7049, Appendix D, Figure 3:
7860  // As half-precision floating-point numbers were only added to
7861  // IEEE 754 in 2008, today's programming platforms often still
7862  // only have limited support for them. It is very easy to
7863  // include at least decoding support for them even without such
7864  // support. An example of a small decoder for half-precision
7865  // floating-point numbers in the C language is shown in Fig. 3.
7866  const int half = (v.at(current_idx + 1) << 8) + v.at(current_idx + 2);
7867  const int exp = (half >> 10) & 0x1f;
7868  const int mant = half & 0x3ff;
7869  double val;
7870  if (exp == 0)
7871  {
7872  val = std::ldexp(mant, -24);
7873  }
7874  else if (exp != 31)
7875  {
7876  val = std::ldexp(mant + 1024, exp - 25);
7877  }
7878  else
7879  {
7880  val = mant == 0
7881  ? std::numeric_limits<double>::infinity()
7882  : std::numeric_limits<double>::quiet_NaN();
7883  }
7884  return (half & 0x8000) != 0 ? -val : val;
7885  }
7886 
7887  case 0xfa: // Single-Precision Float (four-byte IEEE 754)
7888  {
7889  // copy bytes in reverse order into the float variable
7890  float res;
7891  for (size_t byte = 0; byte < sizeof(float); ++byte)
7892  {
7893  reinterpret_cast<uint8_t*>(&res)[sizeof(float) - byte - 1] = v.at(current_idx + 1 + byte);
7894  }
7895  idx += sizeof(float); // skip content bytes
7896  return res;
7897  }
7898 
7899  case 0xfb: // Double-Precision Float (eight-byte IEEE 754)
7900  {
7901  // copy bytes in reverse order into the double variable
7902  double res;
7903  for (size_t byte = 0; byte < sizeof(double); ++byte)
7904  {
7905  reinterpret_cast<uint8_t*>(&res)[sizeof(double) - byte - 1] = v.at(current_idx + 1 + byte);
7906  }
7907  idx += sizeof(double); // skip content bytes
7908  return res;
7909  }
7910 
7911  default: // anything else (0xFF is handled inside the other types)
7912  {
7913  JSON_THROW(std::invalid_argument("error parsing a CBOR @ " + std::to_string(current_idx) + ": " + std::to_string(static_cast<int>(v[current_idx]))));
7914  }
7915  }
7916  }
7917 
7918  public:
7941  static std::vector<uint8_t> to_msgpack(const basic_json& j)
7942  {
7943  std::vector<uint8_t> result;
7944  to_msgpack_internal(j, result);
7945  return result;
7946  }
7947 
7974  static basic_json from_msgpack(const std::vector<uint8_t>& v,
7975  const size_t start_index = 0)
7976  {
7977  size_t i = start_index;
7978  return from_msgpack_internal(v, i);
7979  }
7980 
8004  static std::vector<uint8_t> to_cbor(const basic_json& j)
8005  {
8006  std::vector<uint8_t> result;
8007  to_cbor_internal(j, result);
8008  return result;
8009  }
8010 
8037  static basic_json from_cbor(const std::vector<uint8_t>& v,
8038  const size_t start_index = 0)
8039  {
8040  size_t i = start_index;
8041  return from_cbor_internal(v, i);
8042  }
8043 
8045 
8047  // convenience functions //
8049 
8065  std::string type_name() const
8066  {
8067  {
8068  switch (m_type)
8069  {
8070  case value_t::null:
8071  return "null";
8072  case value_t::object:
8073  return "object";
8074  case value_t::array:
8075  return "array";
8076  case value_t::string:
8077  return "string";
8078  case value_t::boolean:
8079  return "boolean";
8080  case value_t::discarded:
8081  return "discarded";
8082  default:
8083  return "number";
8084  }
8085  }
8086  }
8087 
8088  private:
8097  static std::size_t extra_space(const string_t& s) noexcept
8098  {
8099  return std::accumulate(s.begin(), s.end(), size_t{},
8100  [](size_t res, typename string_t::value_type c)
8101  {
8102  switch (c)
8103  {
8104  case '"':
8105  case '\\':
8106  case '\b':
8107  case '\f':
8108  case '\n':
8109  case '\r':
8110  case '\t':
8111  {
8112  // from c (1 byte) to \x (2 bytes)
8113  return res + 1;
8114  }
8115 
8116  default:
8117  {
8118  if (c >= 0x00 and c <= 0x1f)
8119  {
8120  // from c (1 byte) to \uxxxx (6 bytes)
8121  return res + 5;
8122  }
8123 
8124  return res;
8125  }
8126  }
8127  });
8128  }
8129 
8143  static string_t escape_string(const string_t& s)
8144  {
8145  const auto space = extra_space(s);
8146  if (space == 0)
8147  {
8148  return s;
8149  }
8150 
8151  // create a result string of necessary size
8152  string_t result(s.size() + space, '\\');
8153  std::size_t pos = 0;
8154 
8155  for (const auto& c : s)
8156  {
8157  switch (c)
8158  {
8159  // quotation mark (0x22)
8160  case '"':
8161  {
8162  result[pos + 1] = '"';
8163  pos += 2;
8164  break;
8165  }
8166 
8167  // reverse solidus (0x5c)
8168  case '\\':
8169  {
8170  // nothing to change
8171  pos += 2;
8172  break;
8173  }
8174 
8175  // backspace (0x08)
8176  case '\b':
8177  {
8178  result[pos + 1] = 'b';
8179  pos += 2;
8180  break;
8181  }
8182 
8183  // formfeed (0x0c)
8184  case '\f':
8185  {
8186  result[pos + 1] = 'f';
8187  pos += 2;
8188  break;
8189  }
8190 
8191  // newline (0x0a)
8192  case '\n':
8193  {
8194  result[pos + 1] = 'n';
8195  pos += 2;
8196  break;
8197  }
8198 
8199  // carriage return (0x0d)
8200  case '\r':
8201  {
8202  result[pos + 1] = 'r';
8203  pos += 2;
8204  break;
8205  }
8206 
8207  // horizontal tab (0x09)
8208  case '\t':
8209  {
8210  result[pos + 1] = 't';
8211  pos += 2;
8212  break;
8213  }
8214 
8215  default:
8216  {
8217  if (c >= 0x00 and c <= 0x1f)
8218  {
8219  // convert a number 0..15 to its hex representation
8220  // (0..f)
8221  static const char hexify[16] =
8222  {
8223  '0', '1', '2', '3', '4', '5', '6', '7',
8224  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
8225  };
8226 
8227  // print character c as \uxxxx
8228  for (const char m :
8229  { 'u', '0', '0', hexify[c >> 4], hexify[c & 0x0f]
8230  })
8231  {
8232  result[++pos] = m;
8233  }
8234 
8235  ++pos;
8236  }
8237  else
8238  {
8239  // all other characters are added as-is
8240  result[pos++] = c;
8241  }
8242  break;
8243  }
8244  }
8245  }
8246 
8247  return result;
8248  }
8249 
8250 
8254  struct numtostr
8255  {
8256  public:
8257  template<typename NumberType>
8258  numtostr(NumberType value)
8259  {
8260  x_write(value, std::is_integral<NumberType>());
8261  }
8262 
8263  const char* c_str() const
8264  {
8265  return m_buf.data();
8266  }
8267 
8268  private:
8270  std::array < char, 64 > m_buf{{}};
8271 
8272  template<typename NumberType>
8273  void x_write(NumberType x, /*is_integral=*/std::true_type)
8274  {
8275  // special case for "0"
8276  if (x == 0)
8277  {
8278  m_buf[0] = '0';
8279  return;
8280  }
8281 
8282  const bool is_negative = x < 0;
8283  size_t i = 0;
8284 
8285  // spare 1 byte for '\0'
8286  while (x != 0 and i < m_buf.size() - 1)
8287  {
8288  const auto digit = std::labs(static_cast<long>(x % 10));
8289  m_buf[i++] = static_cast<char>('0' + digit);
8290  x /= 10;
8291  }
8292 
8293  // make sure the number has been processed completely
8294  assert(x == 0);
8295 
8296  if (is_negative)
8297  {
8298  // make sure there is capacity for the '-'
8299  assert(i < m_buf.size() - 2);
8300  m_buf[i++] = '-';
8301  }
8302 
8303  std::reverse(m_buf.begin(), m_buf.begin() + i);
8304  }
8305 
8306  template<typename NumberType>
8307  void x_write(NumberType x, /*is_integral=*/std::false_type)
8308  {
8309  // special case for 0.0 and -0.0
8310  if (x == 0)
8311  {
8312  size_t i = 0;
8313  if (std::signbit(x))
8314  {
8315  m_buf[i++] = '-';
8316  }
8317  m_buf[i++] = '0';
8318  m_buf[i++] = '.';
8319  m_buf[i] = '0';
8320  return;
8321  }
8322 
8323  // get number of digits for a text -> float -> text round-trip
8324  static constexpr auto d = std::numeric_limits<NumberType>::digits10;
8325 
8326  // the actual conversion
8327  const auto written_bytes = snprintf(m_buf.data(), m_buf.size(), "%.*g", d, x);
8328 
8329  // negative value indicates an error
8330  assert(written_bytes > 0);
8331  // check if buffer was large enough
8332  assert(static_cast<size_t>(written_bytes) < m_buf.size());
8333 
8334  // read information from locale
8335  const auto loc = localeconv();
8336  assert(loc != nullptr);
8337  const char thousands_sep = !loc->thousands_sep ? '\0'
8338  : loc->thousands_sep[0];
8339 
8340  const char decimal_point = !loc->decimal_point ? '\0'
8341  : loc->decimal_point[0];
8342 
8343  // erase thousands separator
8344  if (thousands_sep != '\0')
8345  {
8346  const auto end = std::remove(m_buf.begin(), m_buf.begin() + written_bytes, thousands_sep);
8347  std::fill(end, m_buf.end(), '\0');
8348  }
8349 
8350  // convert decimal point to '.'
8351  if (decimal_point != '\0' and decimal_point != '.')
8352  {
8353  for (auto& c : m_buf)
8354  {
8355  if (c == decimal_point)
8356  {
8357  c = '.';
8358  break;
8359  }
8360  }
8361  }
8362 
8363  // determine if need to append ".0"
8364  size_t i = 0;
8365  bool value_is_int_like = true;
8366  for (i = 0; i < m_buf.size(); ++i)
8367  {
8368  // break when end of number is reached
8369  if (m_buf[i] == '\0')
8370  {
8371  break;
8372  }
8373 
8374  // check if we find non-int character
8375  value_is_int_like = value_is_int_like and m_buf[i] != '.' and
8376  m_buf[i] != 'e' and m_buf[i] != 'E';
8377  }
8378 
8379  if (value_is_int_like)
8380  {
8381  // there must be 2 bytes left for ".0"
8382  assert((i + 2) < m_buf.size());
8383  // we write to the end of the number
8384  assert(m_buf[i] == '\0');
8385  assert(m_buf[i - 1] != '\0');
8386 
8387  // add ".0"
8388  m_buf[i] = '.';
8389  m_buf[i + 1] = '0';
8390 
8391  // the resulting string is properly terminated
8392  assert(m_buf[i + 2] == '\0');
8393  }
8394  }
8395  };
8396 
8397 
8415  void dump(std::ostream& o,
8416  const bool pretty_print,
8417  const unsigned int indent_step,
8418  const unsigned int current_indent = 0) const
8419  {
8420  // variable to hold indentation for recursive calls
8421  unsigned int new_indent = current_indent;
8422 
8423  switch (m_type)
8424  {
8425  case value_t::object:
8426  {
8427  if (m_value.object->empty())
8428  {
8429  o << "{}";
8430  return;
8431  }
8432 
8433  o << "{";
8434 
8435  // increase indentation
8436  if (pretty_print)
8437  {
8438  new_indent += indent_step;
8439  o << "\n";
8440  }
8441 
8442  for (auto i = m_value.object->cbegin(); i != m_value.object->cend(); ++i)
8443  {
8444  if (i != m_value.object->cbegin())
8445  {
8446  o << (pretty_print ? ",\n" : ",");
8447  }
8448  o << string_t(new_indent, ' ') << "\""
8449  << escape_string(i->first) << "\":"
8450  << (pretty_print ? " " : "");
8451  i->second.dump(o, pretty_print, indent_step, new_indent);
8452  }
8453 
8454  // decrease indentation
8455  if (pretty_print)
8456  {
8457  new_indent -= indent_step;
8458  o << "\n";
8459  }
8460 
8461  o << string_t(new_indent, ' ') + "}";
8462  return;
8463  }
8464 
8465  case value_t::array:
8466  {
8467  if (m_value.array->empty())
8468  {
8469  o << "[]";
8470  return;
8471  }
8472 
8473  o << "[";
8474 
8475  // increase indentation
8476  if (pretty_print)
8477  {
8478  new_indent += indent_step;
8479  o << "\n";
8480  }
8481 
8482  for (auto i = m_value.array->cbegin(); i != m_value.array->cend(); ++i)
8483  {
8484  if (i != m_value.array->cbegin())
8485  {
8486  o << (pretty_print ? ",\n" : ",");
8487  }
8488  o << string_t(new_indent, ' ');
8489  i->dump(o, pretty_print, indent_step, new_indent);
8490  }
8491 
8492  // decrease indentation
8493  if (pretty_print)
8494  {
8495  new_indent -= indent_step;
8496  o << "\n";
8497  }
8498 
8499  o << string_t(new_indent, ' ') << "]";
8500  return;
8501  }
8502 
8503  case value_t::string:
8504  {
8505  o << string_t("\"") << escape_string(*m_value.string) << "\"";
8506  return;
8507  }
8508 
8509  case value_t::boolean:
8510  {
8511  o << (m_value.boolean ? "true" : "false");
8512  return;
8513  }
8514 
8516  {
8517  o << numtostr(m_value.number_integer).c_str();
8518  return;
8519  }
8520 
8522  {
8523  o << numtostr(m_value.number_unsigned).c_str();
8524  return;
8525  }
8526 
8527  case value_t::number_float:
8528  {
8529  o << numtostr(m_value.number_float).c_str();
8530  return;
8531  }
8532 
8533  case value_t::discarded:
8534  {
8535  o << "<discarded>";
8536  return;
8537  }
8538 
8539  case value_t::null:
8540  {
8541  o << "null";
8542  return;
8543  }
8544  }
8545  }
8546 
8547  private:
8549  // member variables //
8551 
8553  value_t m_type = value_t::null;
8554 
8556  json_value m_value = {};
8557 
8558 
8559  private:
8561  // iterators //
8563 
8573  class primitive_iterator_t
8574  {
8575  public:
8576 
8577  difference_type get_value() const noexcept
8578  {
8579  return m_it;
8580  }
8582  void set_begin() noexcept
8583  {
8584  m_it = begin_value;
8585  }
8586 
8588  void set_end() noexcept
8589  {
8590  m_it = end_value;
8591  }
8592 
8594  constexpr bool is_begin() const noexcept
8595  {
8596  return (m_it == begin_value);
8597  }
8598 
8600  constexpr bool is_end() const noexcept
8601  {
8602  return (m_it == end_value);
8603  }
8604 
8605  friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8606  {
8607  return lhs.m_it == rhs.m_it;
8608  }
8609 
8610  friend constexpr bool operator!=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8611  {
8612  return !(lhs == rhs);
8613  }
8614 
8615  friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8616  {
8617  return lhs.m_it < rhs.m_it;
8618  }
8619 
8620  friend constexpr bool operator<=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8621  {
8622  return lhs.m_it <= rhs.m_it;
8623  }
8624 
8625  friend constexpr bool operator>(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8626  {
8627  return lhs.m_it > rhs.m_it;
8628  }
8629 
8630  friend constexpr bool operator>=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8631  {
8632  return lhs.m_it >= rhs.m_it;
8633  }
8634 
8635  primitive_iterator_t operator+(difference_type i)
8636  {
8637  auto result = *this;
8638  result += i;
8639  return result;
8640  }
8641 
8642  friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
8643  {
8644  return lhs.m_it - rhs.m_it;
8645  }
8646 
8647  friend std::ostream& operator<<(std::ostream& os, primitive_iterator_t it)
8648  {
8649  return os << it.m_it;
8650  }
8651 
8652  primitive_iterator_t& operator++()
8653  {
8654  ++m_it;
8655  return *this;
8656  }
8657 
8658  primitive_iterator_t operator++(int)
8659  {
8660  auto result = *this;
8661  m_it++;
8662  return result;
8663  }
8664 
8665  primitive_iterator_t& operator--()
8666  {
8667  --m_it;
8668  return *this;
8669  }
8670 
8671  primitive_iterator_t operator--(int)
8672  {
8673  auto result = *this;
8674  m_it--;
8675  return result;
8676  }
8677 
8678  primitive_iterator_t& operator+=(difference_type n)
8679  {
8680  m_it += n;
8681  return *this;
8682  }
8683 
8684  primitive_iterator_t& operator-=(difference_type n)
8685  {
8686  m_it -= n;
8687  return *this;
8688  }
8689 
8690  private:
8691  static constexpr difference_type begin_value = 0;
8692  static constexpr difference_type end_value = begin_value + 1;
8693 
8695  difference_type m_it = std::numeric_limits<std::ptrdiff_t>::denorm_min();
8696  };
8697 
8705  struct internal_iterator
8706  {
8708  typename object_t::iterator object_iterator;
8710  typename array_t::iterator array_iterator;
8712  primitive_iterator_t primitive_iterator;
8713 
8715  internal_iterator() noexcept
8716  : object_iterator(), array_iterator(), primitive_iterator()
8717  {}
8718  };
8719 
8721  template<typename IteratorType>
8722  class iteration_proxy
8723  {
8724  private:
8726  class iteration_proxy_internal
8727  {
8728  private:
8730  IteratorType anchor;
8732  size_t array_index = 0;
8733 
8734  public:
8735  explicit iteration_proxy_internal(IteratorType it) noexcept
8736  : anchor(it)
8737  {}
8738 
8740  iteration_proxy_internal& operator*()
8741  {
8742  return *this;
8743  }
8744 
8746  iteration_proxy_internal& operator++()
8747  {
8748  ++anchor;
8749  ++array_index;
8750 
8751  return *this;
8752  }
8753 
8755  bool operator!= (const iteration_proxy_internal& o) const
8756  {
8757  return anchor != o.anchor;
8758  }
8759 
8761  typename basic_json::string_t key() const
8762  {
8763  assert(anchor.m_object != nullptr);
8764 
8765  switch (anchor.m_object->type())
8766  {
8767  // use integer array index as key
8768  case value_t::array:
8769  {
8770  return std::to_string(array_index);
8771  }
8772 
8773  // use key from the object
8774  case value_t::object:
8775  {
8776  return anchor.key();
8777  }
8778 
8779  // use an empty key for all primitive types
8780  default:
8781  {
8782  return "";
8783  }
8784  }
8785  }
8786 
8788  typename IteratorType::reference value() const
8789  {
8790  return anchor.value();
8791  }
8792  };
8793 
8795  typename IteratorType::reference container;
8796 
8797  public:
8799  explicit iteration_proxy(typename IteratorType::reference cont)
8800  : container(cont)
8801  {}
8802 
8804  iteration_proxy_internal begin() noexcept
8805  {
8806  return iteration_proxy_internal(container.begin());
8807  }
8808 
8810  iteration_proxy_internal end() noexcept
8811  {
8812  return iteration_proxy_internal(container.end());
8813  }
8814  };
8815 
8816  public:
8836  template<typename U>
8837  class iter_impl : public std::iterator<std::random_access_iterator_tag, U>
8838  {
8840  friend class basic_json;
8841 
8842  // make sure U is basic_json or const basic_json
8843  static_assert(std::is_same<U, basic_json>::value
8844  or std::is_same<U, const basic_json>::value,
8845  "iter_impl only accepts (const) basic_json");
8846 
8847  public:
8853  using pointer = typename std::conditional<std::is_const<U>::value,
8854  typename basic_json::const_pointer,
8857  using reference = typename std::conditional<std::is_const<U>::value,
8858  typename basic_json::const_reference,
8861  using iterator_category = std::bidirectional_iterator_tag;
8862 
8864  iter_impl() = default;
8865 
8872  explicit iter_impl(pointer object) noexcept
8873  : m_object(object)
8874  {
8875  assert(m_object != nullptr);
8876 
8877  switch (m_object->m_type)
8878  {
8880  {
8881  m_it.object_iterator = typename object_t::iterator();
8882  break;
8883  }
8884 
8886  {
8887  m_it.array_iterator = typename array_t::iterator();
8888  break;
8889  }
8890 
8891  default:
8892  {
8893  m_it.primitive_iterator = primitive_iterator_t();
8894  break;
8895  }
8896  }
8897  }
8898 
8899  /*
8900  Use operator `const_iterator` instead of `const_iterator(const iterator&
8901  other) noexcept` to avoid two class definitions for @ref iterator and
8902  @ref const_iterator.
8903 
8904  This function is only called if this class is an @ref iterator. If this
8905  class is a @ref const_iterator this function is not called.
8906  */
8907  operator const_iterator() const
8908  {
8909  const_iterator ret;
8910 
8911  if (m_object)
8912  {
8913  ret.m_object = m_object;
8914  ret.m_it = m_it;
8915  }
8916 
8917  return ret;
8918  }
8919 
8925  iter_impl(const iter_impl& other) noexcept
8926  : m_object(other.m_object), m_it(other.m_it)
8927  {}
8928 
8934  iter_impl& operator=(iter_impl other) noexcept(
8935  std::is_nothrow_move_constructible<pointer>::value and
8936  std::is_nothrow_move_assignable<pointer>::value and
8937  std::is_nothrow_move_constructible<internal_iterator>::value and
8938  std::is_nothrow_move_assignable<internal_iterator>::value
8939  )
8940  {
8941  std::swap(m_object, other.m_object);
8942  std::swap(m_it, other.m_it);
8943  return *this;
8944  }
8945 
8946  private:
8951  void set_begin() noexcept
8952  {
8953  assert(m_object != nullptr);
8954 
8955  switch (m_object->m_type)
8956  {
8958  {
8959  m_it.object_iterator = m_object->m_value.object->begin();
8960  break;
8961  }
8962 
8964  {
8965  m_it.array_iterator = m_object->m_value.array->begin();
8966  break;
8967  }
8968 
8969  case basic_json::value_t::null:
8970  {
8971  // set to end so begin()==end() is true: null is empty
8972  m_it.primitive_iterator.set_end();
8973  break;
8974  }
8975 
8976  default:
8977  {
8978  m_it.primitive_iterator.set_begin();
8979  break;
8980  }
8981  }
8982  }
8983 
8988  void set_end() noexcept
8989  {
8990  assert(m_object != nullptr);
8991 
8992  switch (m_object->m_type)
8993  {
8995  {
8996  m_it.object_iterator = m_object->m_value.object->end();
8997  break;
8998  }
8999 
9001  {
9002  m_it.array_iterator = m_object->m_value.array->end();
9003  break;
9004  }
9005 
9006  default:
9007  {
9008  m_it.primitive_iterator.set_end();
9009  break;
9010  }
9011  }
9012  }
9013 
9014  public:
9020  {
9021  assert(m_object != nullptr);
9022 
9023  switch (m_object->m_type)
9024  {
9026  {
9027  assert(m_it.object_iterator != m_object->m_value.object->end());
9028  return m_it.object_iterator->second;
9029  }
9030 
9032  {
9033  assert(m_it.array_iterator != m_object->m_value.array->end());
9034  return *m_it.array_iterator;
9035  }
9036 
9037  case basic_json::value_t::null:
9038  {
9039  JSON_THROW(std::out_of_range("cannot get value"));
9040  }
9041 
9042  default:
9043  {
9044  if (m_it.primitive_iterator.is_begin())
9045  {
9046  return *m_object;
9047  }
9048 
9049  JSON_THROW(std::out_of_range("cannot get value"));
9050  }
9051  }
9052  }
9053 
9059  {
9060  assert(m_object != nullptr);
9061 
9062  switch (m_object->m_type)
9063  {
9065  {
9066  assert(m_it.object_iterator != m_object->m_value.object->end());
9067  return &(m_it.object_iterator->second);
9068  }
9069 
9071  {
9072  assert(m_it.array_iterator != m_object->m_value.array->end());
9073  return &*m_it.array_iterator;
9074  }
9075 
9076  default:
9077  {
9078  if (m_it.primitive_iterator.is_begin())
9079  {
9080  return m_object;
9081  }
9082 
9083  JSON_THROW(std::out_of_range("cannot get value"));
9084  }
9085  }
9086  }
9087 
9093  {
9094  auto result = *this;
9095  ++(*this);
9096  return result;
9097  }
9098 
9104  {
9105  assert(m_object != nullptr);
9106 
9107  switch (m_object->m_type)
9108  {
9110  {
9111  std::advance(m_it.object_iterator, 1);
9112  break;
9113  }
9114 
9116  {
9117  std::advance(m_it.array_iterator, 1);
9118  break;
9119  }
9120 
9121  default:
9122  {
9123  ++m_it.primitive_iterator;
9124  break;
9125  }
9126  }
9127 
9128  return *this;
9129  }
9130 
9136  {
9137  auto result = *this;
9138  --(*this);
9139  return result;
9140  }
9141 
9147  {
9148  assert(m_object != nullptr);
9149 
9150  switch (m_object->m_type)
9151  {
9153  {
9154  std::advance(m_it.object_iterator, -1);
9155  break;
9156  }
9157 
9159  {
9160  std::advance(m_it.array_iterator, -1);
9161  break;
9162  }
9163 
9164  default:
9165  {
9166  --m_it.primitive_iterator;
9167  break;
9168  }
9169  }
9170 
9171  return *this;
9172  }
9173 
9178  bool operator==(const iter_impl& other) const
9179  {
9180  // if objects are not the same, the comparison is undefined
9181  if (m_object != other.m_object)
9182  {
9183  JSON_THROW(std::domain_error("cannot compare iterators of different containers"));
9184  }
9185 
9186  assert(m_object != nullptr);
9187 
9188  switch (m_object->m_type)
9189  {
9191  {
9192  return (m_it.object_iterator == other.m_it.object_iterator);
9193  }
9194 
9196  {
9197  return (m_it.array_iterator == other.m_it.array_iterator);
9198  }
9199 
9200  default:
9201  {
9202  return (m_it.primitive_iterator == other.m_it.primitive_iterator);
9203  }
9204  }
9205  }
9206 
9211  bool operator!=(const iter_impl& other) const
9212  {
9213  return not operator==(other);
9214  }
9215 
9220  bool operator<(const iter_impl& other) const
9221  {
9222  // if objects are not the same, the comparison is undefined
9223  if (m_object != other.m_object)
9224  {
9225  JSON_THROW(std::domain_error("cannot compare iterators of different containers"));
9226  }
9227 
9228  assert(m_object != nullptr);
9229 
9230  switch (m_object->m_type)
9231  {
9233  {
9234  JSON_THROW(std::domain_error("cannot compare order of object iterators"));
9235  }
9236 
9238  {
9239  return (m_it.array_iterator < other.m_it.array_iterator);
9240  }
9241 
9242  default:
9243  {
9244  return (m_it.primitive_iterator < other.m_it.primitive_iterator);
9245  }
9246  }
9247  }
9248 
9253  bool operator<=(const iter_impl& other) const
9254  {
9255  return not other.operator < (*this);
9256  }
9257 
9262  bool operator>(const iter_impl& other) const
9263  {
9264  return not operator<=(other);
9265  }
9266 
9271  bool operator>=(const iter_impl& other) const
9272  {
9273  return not operator<(other);
9274  }
9275 
9281  {
9282  assert(m_object != nullptr);
9283 
9284  switch (m_object->m_type)
9285  {
9287  {
9288  JSON_THROW(std::domain_error("cannot use offsets with object iterators"));
9289  }
9290 
9292  {
9293  std::advance(m_it.array_iterator, i);
9294  break;
9295  }
9296 
9297  default:
9298  {
9299  m_it.primitive_iterator += i;
9300  break;
9301  }
9302  }
9303 
9304  return *this;
9305  }
9306 
9312  {
9313  return operator+=(-i);
9314  }
9315 
9321  {
9322  auto result = *this;
9323  result += i;
9324  return result;
9325  }
9326 
9332  {
9333  auto result = *this;
9334  result -= i;
9335  return result;
9336  }
9337 
9343  {
9344  assert(m_object != nullptr);
9345 
9346  switch (m_object->m_type)
9347  {
9349  {
9350  JSON_THROW(std::domain_error("cannot use offsets with object iterators"));
9351  }
9352 
9354  {
9355  return m_it.array_iterator - other.m_it.array_iterator;
9356  }
9357 
9358  default:
9359  {
9360  return m_it.primitive_iterator - other.m_it.primitive_iterator;
9361  }
9362  }
9363  }
9364 
9370  {
9371  assert(m_object != nullptr);
9372 
9373  switch (m_object->m_type)
9374  {
9376  {
9377  JSON_THROW(std::domain_error("cannot use operator[] for object iterators"));
9378  }
9379 
9381  {
9382  return *std::next(m_it.array_iterator, n);
9383  }
9384 
9385  case basic_json::value_t::null:
9386  {
9387  JSON_THROW(std::out_of_range("cannot get value"));
9388  }
9389 
9390  default:
9391  {
9392  if (m_it.primitive_iterator.get_value() == -n)
9393  {
9394  return *m_object;
9395  }
9396 
9397  JSON_THROW(std::out_of_range("cannot get value"));
9398  }
9399  }
9400  }
9401 
9406  typename object_t::key_type key() const
9407  {
9408  assert(m_object != nullptr);
9409 
9410  if (m_object->is_object())
9411  {
9412  return m_it.object_iterator->first;
9413  }
9414 
9415  JSON_THROW(std::domain_error("cannot use key() for non-object iterators"));
9416  }
9417 
9423  {
9424  return operator*();
9425  }
9426 
9427  private:
9429  pointer m_object = nullptr;
9431  internal_iterator m_it = internal_iterator();
9432  };
9433 
9451  template<typename Base>
9452  class json_reverse_iterator : public std::reverse_iterator<Base>
9453  {
9454  public:
9456  using base_iterator = std::reverse_iterator<Base>;
9458  using reference = typename Base::reference;
9459 
9461  json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
9462  : base_iterator(it)
9463  {}
9464 
9467  : base_iterator(it)
9468  {}
9469 
9472  {
9473  return base_iterator::operator++(1);
9474  }
9475 
9478  {
9479  base_iterator::operator++();
9480  return *this;
9481  }
9482 
9485  {
9486  return base_iterator::operator--(1);
9487  }
9488 
9491  {
9492  base_iterator::operator--();
9493  return *this;
9494  }
9495 
9498  {
9499  base_iterator::operator+=(i);
9500  return *this;
9501  }
9502 
9505  {
9506  auto result = *this;
9507  result += i;
9508  return result;
9509  }
9510 
9513  {
9514  auto result = *this;
9515  result -= i;
9516  return result;
9517  }
9518 
9521  {
9522  return this->base() - other.base();
9523  }
9524 
9527  {
9528  return *(this->operator+(n));
9529  }
9530 
9532  typename object_t::key_type key() const
9533  {
9534  auto it = --this->base();
9535  return it.key();
9536  }
9537 
9540  {
9541  auto it = --this->base();
9542  return it.operator * ();
9543  }
9544  };
9545 
9546 
9547  private:
9549  // lexer and parser //
9551 
9559  class lexer
9560  {
9561  public:
9563  enum class token_type
9564  {
9565  uninitialized,
9566  literal_true,
9567  literal_false,
9568  literal_null,
9569  value_string,
9570  value_unsigned,
9571  value_integer,
9572  value_float,
9573  begin_array,
9574  begin_object,
9575  end_array,
9576  end_object,
9577  name_separator,
9578  value_separator,
9579  parse_error,
9580  end_of_input
9581  };
9582 
9584  using lexer_char_t = unsigned char;
9585 
9587  lexer(const lexer_char_t* buff, const size_t len) noexcept
9588  : m_content(buff)
9589  {
9590  assert(m_content != nullptr);
9591  m_start = m_cursor = m_content;
9592  m_limit = m_content + len;
9593  }
9594 
9596  explicit lexer(std::istream& s)
9597  : m_stream(&s), m_line_buffer()
9598  {
9599  // immediately abort if stream is erroneous
9600  if (s.fail())
9601  {
9602  JSON_THROW(std::invalid_argument("stream error"));
9603  }
9604 
9605  // fill buffer
9606  fill_line_buffer();
9607 
9608  // skip UTF-8 byte-order mark
9609  if (m_line_buffer.size() >= 3 and m_line_buffer.substr(0, 3) == "\xEF\xBB\xBF")
9610  {
9611  m_line_buffer[0] = ' ';
9612  m_line_buffer[1] = ' ';
9613  m_line_buffer[2] = ' ';
9614  }
9615  }
9616 
9617  // switch off unwanted functions (due to pointer members)
9618  lexer() = delete;
9619  lexer(const lexer&) = delete;
9620  lexer operator=(const lexer&) = delete;
9621 
9645  static string_t to_unicode(const std::size_t codepoint1,
9646  const std::size_t codepoint2 = 0)
9647  {
9648  // calculate the code point from the given code points
9649  std::size_t codepoint = codepoint1;
9650 
9651  // check if codepoint1 is a high surrogate
9652  if (codepoint1 >= 0xD800 and codepoint1 <= 0xDBFF)
9653  {
9654  // check if codepoint2 is a low surrogate
9655  if (codepoint2 >= 0xDC00 and codepoint2 <= 0xDFFF)
9656  {
9657  codepoint =
9658  // high surrogate occupies the most significant 22 bits
9659  (codepoint1 << 10)
9660  // low surrogate occupies the least significant 15 bits
9661  + codepoint2
9662  // there is still the 0xD800, 0xDC00 and 0x10000 noise
9663  // in the result so we have to subtract with:
9664  // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
9665  - 0x35FDC00;
9666  }
9667  else
9668  {
9669  JSON_THROW(std::invalid_argument("missing or wrong low surrogate"));
9670  }
9671  }
9672 
9673  string_t result;
9674 
9675  if (codepoint < 0x80)
9676  {
9677  // 1-byte characters: 0xxxxxxx (ASCII)
9678  result.append(1, static_cast<typename string_t::value_type>(codepoint));
9679  }
9680  else if (codepoint <= 0x7ff)
9681  {
9682  // 2-byte characters: 110xxxxx 10xxxxxx
9683  result.append(1, static_cast<typename string_t::value_type>(0xC0 | ((codepoint >> 6) & 0x1F)));
9684  result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
9685  }
9686  else if (codepoint <= 0xffff)
9687  {
9688  // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
9689  result.append(1, static_cast<typename string_t::value_type>(0xE0 | ((codepoint >> 12) & 0x0F)));
9690  result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F)));
9691  result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
9692  }
9693  else if (codepoint <= 0x10ffff)
9694  {
9695  // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
9696  result.append(1, static_cast<typename string_t::value_type>(0xF0 | ((codepoint >> 18) & 0x07)));
9697  result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 12) & 0x3F)));
9698  result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F)));
9699  result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
9700  }
9701  else
9702  {
9703  JSON_THROW(std::out_of_range("code points above 0x10FFFF are invalid"));
9704  }
9705 
9706  return result;
9707  }
9708 
9710  static std::string token_type_name(const token_type t)
9711  {
9712  switch (t)
9713  {
9714  case token_type::uninitialized:
9715  return "<uninitialized>";
9716  case token_type::literal_true:
9717  return "true literal";
9718  case token_type::literal_false:
9719  return "false literal";
9720  case token_type::literal_null:
9721  return "null literal";
9722  case token_type::value_string:
9723  return "string literal";
9724  case lexer::token_type::value_unsigned:
9725  case lexer::token_type::value_integer:
9726  case lexer::token_type::value_float:
9727  return "number literal";
9728  case token_type::begin_array:
9729  return "'['";
9730  case token_type::begin_object:
9731  return "'{'";
9732  case token_type::end_array:
9733  return "']'";
9734  case token_type::end_object:
9735  return "'}'";
9736  case token_type::name_separator:
9737  return "':'";
9738  case token_type::value_separator:
9739  return "','";
9740  case token_type::parse_error:
9741  return "<parse error>";
9742  case token_type::end_of_input:
9743  return "end of input";
9744  default:
9745  {
9746  // catch non-enum values
9747  return "unknown token"; // LCOV_EXCL_LINE
9748  }
9749  }
9750  }
9751 
9773  token_type scan()
9774  {
9775  while (true)
9776  {
9777  // pointer for backtracking information
9778  m_marker = nullptr;
9779 
9780  // remember the begin of the token
9781  m_start = m_cursor;
9782  assert(m_start != nullptr);
9783 
9784 
9785  {
9786  lexer_char_t yych;
9787  unsigned int yyaccept = 0;
9788  static const unsigned char yybm[] =
9789  {
9790  0, 0, 0, 0, 0, 0, 0, 0,
9791  0, 32, 32, 0, 0, 32, 0, 0,
9792  0, 0, 0, 0, 0, 0, 0, 0,
9793  0, 0, 0, 0, 0, 0, 0, 0,
9794  160, 128, 0, 128, 128, 128, 128, 128,
9795  128, 128, 128, 128, 128, 128, 128, 128,
9796  192, 192, 192, 192, 192, 192, 192, 192,
9797  192, 192, 128, 128, 128, 128, 128, 128,
9798  128, 128, 128, 128, 128, 128, 128, 128,
9799  128, 128, 128, 128, 128, 128, 128, 128,
9800  128, 128, 128, 128, 128, 128, 128, 128,
9801  128, 128, 128, 128, 0, 128, 128, 128,
9802  128, 128, 128, 128, 128, 128, 128, 128,
9803  128, 128, 128, 128, 128, 128, 128, 128,
9804  128, 128, 128, 128, 128, 128, 128, 128,
9805  128, 128, 128, 128, 128, 128, 128, 128,
9806  0, 0, 0, 0, 0, 0, 0, 0,
9807  0, 0, 0, 0, 0, 0, 0, 0,
9808  0, 0, 0, 0, 0, 0, 0, 0,
9809  0, 0, 0, 0, 0, 0, 0, 0,
9810  0, 0, 0, 0, 0, 0, 0, 0,
9811  0, 0, 0, 0, 0, 0, 0, 0,
9812  0, 0, 0, 0, 0, 0, 0, 0,
9813  0, 0, 0, 0, 0, 0, 0, 0,
9814  0, 0, 0, 0, 0, 0, 0, 0,
9815  0, 0, 0, 0, 0, 0, 0, 0,
9816  0, 0, 0, 0, 0, 0, 0, 0,
9817  0, 0, 0, 0, 0, 0, 0, 0,
9818  0, 0, 0, 0, 0, 0, 0, 0,
9819  0, 0, 0, 0, 0, 0, 0, 0,
9820  0, 0, 0, 0, 0, 0, 0, 0,
9821  0, 0, 0, 0, 0, 0, 0, 0,
9822  };
9823  if ((m_limit - m_cursor) < 5)
9824  {
9825  fill_line_buffer(5); // LCOV_EXCL_LINE
9826  }
9827  yych = *m_cursor;
9828  if (yybm[0 + yych] & 32)
9829  {
9830  goto basic_json_parser_6;
9831  }
9832  if (yych <= '[')
9833  {
9834  if (yych <= '-')
9835  {
9836  if (yych <= '"')
9837  {
9838  if (yych <= 0x00)
9839  {
9840  goto basic_json_parser_2;
9841  }
9842  if (yych <= '!')
9843  {
9844  goto basic_json_parser_4;
9845  }
9846  goto basic_json_parser_9;
9847  }
9848  else
9849  {
9850  if (yych <= '+')
9851  {
9852  goto basic_json_parser_4;
9853  }
9854  if (yych <= ',')
9855  {
9856  goto basic_json_parser_10;
9857  }
9858  goto basic_json_parser_12;
9859  }
9860  }
9861  else
9862  {
9863  if (yych <= '9')
9864  {
9865  if (yych <= '/')
9866  {
9867  goto basic_json_parser_4;
9868  }
9869  if (yych <= '0')
9870  {
9871  goto basic_json_parser_13;
9872  }
9873  goto basic_json_parser_15;
9874  }
9875  else
9876  {
9877  if (yych <= ':')
9878  {
9879  goto basic_json_parser_17;
9880  }
9881  if (yych <= 'Z')
9882  {
9883  goto basic_json_parser_4;
9884  }
9885  goto basic_json_parser_19;
9886  }
9887  }
9888  }
9889  else
9890  {
9891  if (yych <= 'n')
9892  {
9893  if (yych <= 'e')
9894  {
9895  if (yych == ']')
9896  {
9897  goto basic_json_parser_21;
9898  }
9899  goto basic_json_parser_4;
9900  }
9901  else
9902  {
9903  if (yych <= 'f')
9904  {
9905  goto basic_json_parser_23;
9906  }
9907  if (yych <= 'm')
9908  {
9909  goto basic_json_parser_4;
9910  }
9911  goto basic_json_parser_24;
9912  }
9913  }
9914  else
9915  {
9916  if (yych <= 'z')
9917  {
9918  if (yych == 't')
9919  {
9920  goto basic_json_parser_25;
9921  }
9922  goto basic_json_parser_4;
9923  }
9924  else
9925  {
9926  if (yych <= '{')
9927  {
9928  goto basic_json_parser_26;
9929  }
9930  if (yych == '}')
9931  {
9932  goto basic_json_parser_28;
9933  }
9934  goto basic_json_parser_4;
9935  }
9936  }
9937  }
9938 basic_json_parser_2:
9939  ++m_cursor;
9940  {
9941  last_token_type = token_type::end_of_input;
9942  break;
9943  }
9944 basic_json_parser_4:
9945  ++m_cursor;
9946 basic_json_parser_5:
9947  {
9948  last_token_type = token_type::parse_error;
9949  break;
9950  }
9951 basic_json_parser_6:
9952  ++m_cursor;
9953  if (m_limit <= m_cursor)
9954  {
9955  fill_line_buffer(1); // LCOV_EXCL_LINE
9956  }
9957  yych = *m_cursor;
9958  if (yybm[0 + yych] & 32)
9959  {
9960  goto basic_json_parser_6;
9961  }
9962  {
9963  continue;
9964  }
9965 basic_json_parser_9:
9966  yyaccept = 0;
9967  yych = *(m_marker = ++m_cursor);
9968  if (yych <= 0x1F)
9969  {
9970  goto basic_json_parser_5;
9971  }
9972  if (yych <= 0x7F)
9973  {
9974  goto basic_json_parser_31;
9975  }
9976  if (yych <= 0xC1)
9977  {
9978  goto basic_json_parser_5;
9979  }
9980  if (yych <= 0xF4)
9981  {
9982  goto basic_json_parser_31;
9983  }
9984  goto basic_json_parser_5;
9985 basic_json_parser_10:
9986  ++m_cursor;
9987  {
9988  last_token_type = token_type::value_separator;
9989  break;
9990  }
9991 basic_json_parser_12:
9992  yych = *++m_cursor;
9993  if (yych <= '/')
9994  {
9995  goto basic_json_parser_5;
9996  }
9997  if (yych <= '0')
9998  {
9999  goto basic_json_parser_43;
10000  }
10001  if (yych <= '9')
10002  {
10003  goto basic_json_parser_45;
10004  }
10005  goto basic_json_parser_5;
10006 basic_json_parser_13:
10007  yyaccept = 1;
10008  yych = *(m_marker = ++m_cursor);
10009  if (yych <= '9')
10010  {
10011  if (yych == '.')
10012  {
10013  goto basic_json_parser_47;
10014  }
10015  if (yych >= '0')
10016  {
10017  goto basic_json_parser_48;
10018  }
10019  }
10020  else
10021  {
10022  if (yych <= 'E')
10023  {
10024  if (yych >= 'E')
10025  {
10026  goto basic_json_parser_51;
10027  }
10028  }
10029  else
10030  {
10031  if (yych == 'e')
10032  {
10033  goto basic_json_parser_51;
10034  }
10035  }
10036  }
10037 basic_json_parser_14:
10038  {
10039  last_token_type = token_type::value_unsigned;
10040  break;
10041  }
10042 basic_json_parser_15:
10043  yyaccept = 1;
10044  m_marker = ++m_cursor;
10045  if ((m_limit - m_cursor) < 3)
10046  {
10047  fill_line_buffer(3); // LCOV_EXCL_LINE
10048  }
10049  yych = *m_cursor;
10050  if (yybm[0 + yych] & 64)
10051  {
10052  goto basic_json_parser_15;
10053  }
10054  if (yych <= 'D')
10055  {
10056  if (yych == '.')
10057  {
10058  goto basic_json_parser_47;
10059  }
10060  goto basic_json_parser_14;
10061  }
10062  else
10063  {
10064  if (yych <= 'E')
10065  {
10066  goto basic_json_parser_51;
10067  }
10068  if (yych == 'e')
10069  {
10070  goto basic_json_parser_51;
10071  }
10072  goto basic_json_parser_14;
10073  }
10074 basic_json_parser_17:
10075  ++m_cursor;
10076  {
10077  last_token_type = token_type::name_separator;
10078  break;
10079  }
10080 basic_json_parser_19:
10081  ++m_cursor;
10082  {
10083  last_token_type = token_type::begin_array;
10084  break;
10085  }
10086 basic_json_parser_21:
10087  ++m_cursor;
10088  {
10089  last_token_type = token_type::end_array;
10090  break;
10091  }
10092 basic_json_parser_23:
10093  yyaccept = 0;
10094  yych = *(m_marker = ++m_cursor);
10095  if (yych == 'a')
10096  {
10097  goto basic_json_parser_52;
10098  }
10099  goto basic_json_parser_5;
10100 basic_json_parser_24:
10101  yyaccept = 0;
10102  yych = *(m_marker = ++m_cursor);
10103  if (yych == 'u')
10104  {
10105  goto basic_json_parser_53;
10106  }
10107  goto basic_json_parser_5;
10108 basic_json_parser_25:
10109  yyaccept = 0;
10110  yych = *(m_marker = ++m_cursor);
10111  if (yych == 'r')
10112  {
10113  goto basic_json_parser_54;
10114  }
10115  goto basic_json_parser_5;
10116 basic_json_parser_26:
10117  ++m_cursor;
10118  {
10119  last_token_type = token_type::begin_object;
10120  break;
10121  }
10122 basic_json_parser_28:
10123  ++m_cursor;
10124  {
10125  last_token_type = token_type::end_object;
10126  break;
10127  }
10128 basic_json_parser_30:
10129  ++m_cursor;
10130  if (m_limit <= m_cursor)
10131  {
10132  fill_line_buffer(1); // LCOV_EXCL_LINE
10133  }
10134  yych = *m_cursor;
10135 basic_json_parser_31:
10136  if (yybm[0 + yych] & 128)
10137  {
10138  goto basic_json_parser_30;
10139  }
10140  if (yych <= 0xE0)
10141  {
10142  if (yych <= '\\')
10143  {
10144  if (yych <= 0x1F)
10145  {
10146  goto basic_json_parser_32;
10147  }
10148  if (yych <= '"')
10149  {
10150  goto basic_json_parser_33;
10151  }
10152  goto basic_json_parser_35;
10153  }
10154  else
10155  {
10156  if (yych <= 0xC1)
10157  {
10158  goto basic_json_parser_32;
10159  }
10160  if (yych <= 0xDF)
10161  {
10162  goto basic_json_parser_36;
10163  }
10164  goto basic_json_parser_37;
10165  }
10166  }
10167  else
10168  {
10169  if (yych <= 0xEF)
10170  {
10171  if (yych == 0xED)
10172  {
10173  goto basic_json_parser_39;
10174  }
10175  goto basic_json_parser_38;
10176  }
10177  else
10178  {
10179  if (yych <= 0xF0)
10180  {
10181  goto basic_json_parser_40;
10182  }
10183  if (yych <= 0xF3)
10184  {
10185  goto basic_json_parser_41;
10186  }
10187  if (yych <= 0xF4)
10188  {
10189  goto basic_json_parser_42;
10190  }
10191  }
10192  }
10193 basic_json_parser_32:
10194  m_cursor = m_marker;
10195  if (yyaccept <= 1)
10196  {
10197  if (yyaccept == 0)
10198  {
10199  goto basic_json_parser_5;
10200  }
10201  else
10202  {
10203  goto basic_json_parser_14;
10204  }
10205  }
10206  else
10207  {
10208  if (yyaccept == 2)
10209  {
10210  goto basic_json_parser_44;
10211  }
10212  else
10213  {
10214  goto basic_json_parser_58;
10215  }
10216  }
10217 basic_json_parser_33:
10218  ++m_cursor;
10219  {
10220  last_token_type = token_type::value_string;
10221  break;
10222  }
10223 basic_json_parser_35:
10224  ++m_cursor;
10225  if (m_limit <= m_cursor)
10226  {
10227  fill_line_buffer(1); // LCOV_EXCL_LINE
10228  }
10229  yych = *m_cursor;
10230  if (yych <= 'e')
10231  {
10232  if (yych <= '/')
10233  {
10234  if (yych == '"')
10235  {
10236  goto basic_json_parser_30;
10237  }
10238  if (yych <= '.')
10239  {
10240  goto basic_json_parser_32;
10241  }
10242  goto basic_json_parser_30;
10243  }
10244  else
10245  {
10246  if (yych <= '\\')
10247  {
10248  if (yych <= '[')
10249  {
10250  goto basic_json_parser_32;
10251  }
10252  goto basic_json_parser_30;
10253  }
10254  else
10255  {
10256  if (yych == 'b')
10257  {
10258  goto basic_json_parser_30;
10259  }
10260  goto basic_json_parser_32;
10261  }
10262  }
10263  }
10264  else
10265  {
10266  if (yych <= 'q')
10267  {
10268  if (yych <= 'f')
10269  {
10270  goto basic_json_parser_30;
10271  }
10272  if (yych == 'n')
10273  {
10274  goto basic_json_parser_30;
10275  }
10276  goto basic_json_parser_32;
10277  }
10278  else
10279  {
10280  if (yych <= 's')
10281  {
10282  if (yych <= 'r')
10283  {
10284  goto basic_json_parser_30;
10285  }
10286  goto basic_json_parser_32;
10287  }
10288  else
10289  {
10290  if (yych <= 't')
10291  {
10292  goto basic_json_parser_30;
10293  }
10294  if (yych <= 'u')
10295  {
10296  goto basic_json_parser_55;
10297  }
10298  goto basic_json_parser_32;
10299  }
10300  }
10301  }
10302 basic_json_parser_36:
10303  ++m_cursor;
10304  if (m_limit <= m_cursor)
10305  {
10306  fill_line_buffer(1); // LCOV_EXCL_LINE
10307  }
10308  yych = *m_cursor;
10309  if (yych <= 0x7F)
10310  {
10311  goto basic_json_parser_32;
10312  }
10313  if (yych <= 0xBF)
10314  {
10315  goto basic_json_parser_30;
10316  }
10317  goto basic_json_parser_32;
10318 basic_json_parser_37:
10319  ++m_cursor;
10320  if (m_limit <= m_cursor)
10321  {
10322  fill_line_buffer(1); // LCOV_EXCL_LINE
10323  }
10324  yych = *m_cursor;
10325  if (yych <= 0x9F)
10326  {
10327  goto basic_json_parser_32;
10328  }
10329  if (yych <= 0xBF)
10330  {
10331  goto basic_json_parser_36;
10332  }
10333  goto basic_json_parser_32;
10334 basic_json_parser_38:
10335  ++m_cursor;
10336  if (m_limit <= m_cursor)
10337  {
10338  fill_line_buffer(1); // LCOV_EXCL_LINE
10339  }
10340  yych = *m_cursor;
10341  if (yych <= 0x7F)
10342  {
10343  goto basic_json_parser_32;
10344  }
10345  if (yych <= 0xBF)
10346  {
10347  goto basic_json_parser_36;
10348  }
10349  goto basic_json_parser_32;
10350 basic_json_parser_39:
10351  ++m_cursor;
10352  if (m_limit <= m_cursor)
10353  {
10354  fill_line_buffer(1); // LCOV_EXCL_LINE
10355  }
10356  yych = *m_cursor;
10357  if (yych <= 0x7F)
10358  {
10359  goto basic_json_parser_32;
10360  }
10361  if (yych <= 0x9F)
10362  {
10363  goto basic_json_parser_36;
10364  }
10365  goto basic_json_parser_32;
10366 basic_json_parser_40:
10367  ++m_cursor;
10368  if (m_limit <= m_cursor)
10369  {
10370  fill_line_buffer(1); // LCOV_EXCL_LINE
10371  }
10372  yych = *m_cursor;
10373  if (yych <= 0x8F)
10374  {
10375  goto basic_json_parser_32;
10376  }
10377  if (yych <= 0xBF)
10378  {
10379  goto basic_json_parser_38;
10380  }
10381  goto basic_json_parser_32;
10382 basic_json_parser_41:
10383  ++m_cursor;
10384  if (m_limit <= m_cursor)
10385  {
10386  fill_line_buffer(1); // LCOV_EXCL_LINE
10387  }
10388  yych = *m_cursor;
10389  if (yych <= 0x7F)
10390  {
10391  goto basic_json_parser_32;
10392  }
10393  if (yych <= 0xBF)
10394  {
10395  goto basic_json_parser_38;
10396  }
10397  goto basic_json_parser_32;
10398 basic_json_parser_42:
10399  ++m_cursor;
10400  if (m_limit <= m_cursor)
10401  {
10402  fill_line_buffer(1); // LCOV_EXCL_LINE
10403  }
10404  yych = *m_cursor;
10405  if (yych <= 0x7F)
10406  {
10407  goto basic_json_parser_32;
10408  }
10409  if (yych <= 0x8F)
10410  {
10411  goto basic_json_parser_38;
10412  }
10413  goto basic_json_parser_32;
10414 basic_json_parser_43:
10415  yyaccept = 2;
10416  yych = *(m_marker = ++m_cursor);
10417  if (yych <= '9')
10418  {
10419  if (yych == '.')
10420  {
10421  goto basic_json_parser_47;
10422  }
10423  if (yych >= '0')
10424  {
10425  goto basic_json_parser_48;
10426  }
10427  }
10428  else
10429  {
10430  if (yych <= 'E')
10431  {
10432  if (yych >= 'E')
10433  {
10434  goto basic_json_parser_51;
10435  }
10436  }
10437  else
10438  {
10439  if (yych == 'e')
10440  {
10441  goto basic_json_parser_51;
10442  }
10443  }
10444  }
10445 basic_json_parser_44:
10446  {
10447  last_token_type = token_type::value_integer;
10448  break;
10449  }
10450 basic_json_parser_45:
10451  yyaccept = 2;
10452  m_marker = ++m_cursor;
10453  if ((m_limit - m_cursor) < 3)
10454  {
10455  fill_line_buffer(3); // LCOV_EXCL_LINE
10456  }
10457  yych = *m_cursor;
10458  if (yych <= '9')
10459  {
10460  if (yych == '.')
10461  {
10462  goto basic_json_parser_47;
10463  }
10464  if (yych <= '/')
10465  {
10466  goto basic_json_parser_44;
10467  }
10468  goto basic_json_parser_45;
10469  }
10470  else
10471  {
10472  if (yych <= 'E')
10473  {
10474  if (yych <= 'D')
10475  {
10476  goto basic_json_parser_44;
10477  }
10478  goto basic_json_parser_51;
10479  }
10480  else
10481  {
10482  if (yych == 'e')
10483  {
10484  goto basic_json_parser_51;
10485  }
10486  goto basic_json_parser_44;
10487  }
10488  }
10489 basic_json_parser_47:
10490  yych = *++m_cursor;
10491  if (yych <= '/')
10492  {
10493  goto basic_json_parser_32;
10494  }
10495  if (yych <= '9')
10496  {
10497  goto basic_json_parser_56;
10498  }
10499  goto basic_json_parser_32;
10500 basic_json_parser_48:
10501  ++m_cursor;
10502  if (m_limit <= m_cursor)
10503  {
10504  fill_line_buffer(1); // LCOV_EXCL_LINE
10505  }
10506  yych = *m_cursor;
10507  if (yych <= '/')
10508  {
10509  goto basic_json_parser_50;
10510  }
10511  if (yych <= '9')
10512  {
10513  goto basic_json_parser_48;
10514  }
10515 basic_json_parser_50:
10516  {
10517  last_token_type = token_type::parse_error;
10518  break;
10519  }
10520 basic_json_parser_51:
10521  yych = *++m_cursor;
10522  if (yych <= ',')
10523  {
10524  if (yych == '+')
10525  {
10526  goto basic_json_parser_59;
10527  }
10528  goto basic_json_parser_32;
10529  }
10530  else
10531  {
10532  if (yych <= '-')
10533  {
10534  goto basic_json_parser_59;
10535  }
10536  if (yych <= '/')
10537  {
10538  goto basic_json_parser_32;
10539  }
10540  if (yych <= '9')
10541  {
10542  goto basic_json_parser_60;
10543  }
10544  goto basic_json_parser_32;
10545  }
10546 basic_json_parser_52:
10547  yych = *++m_cursor;
10548  if (yych == 'l')
10549  {
10550  goto basic_json_parser_62;
10551  }
10552  goto basic_json_parser_32;
10553 basic_json_parser_53:
10554  yych = *++m_cursor;
10555  if (yych == 'l')
10556  {
10557  goto basic_json_parser_63;
10558  }
10559  goto basic_json_parser_32;
10560 basic_json_parser_54:
10561  yych = *++m_cursor;
10562  if (yych == 'u')
10563  {
10564  goto basic_json_parser_64;
10565  }
10566  goto basic_json_parser_32;
10567 basic_json_parser_55:
10568  ++m_cursor;
10569  if (m_limit <= m_cursor)
10570  {
10571  fill_line_buffer(1); // LCOV_EXCL_LINE
10572  }
10573  yych = *m_cursor;
10574  if (yych <= '@')
10575  {
10576  if (yych <= '/')
10577  {
10578  goto basic_json_parser_32;
10579  }
10580  if (yych <= '9')
10581  {
10582  goto basic_json_parser_65;
10583  }
10584  goto basic_json_parser_32;
10585  }
10586  else
10587  {
10588  if (yych <= 'F')
10589  {
10590  goto basic_json_parser_65;
10591  }
10592  if (yych <= '`')
10593  {
10594  goto basic_json_parser_32;
10595  }
10596  if (yych <= 'f')
10597  {
10598  goto basic_json_parser_65;
10599  }
10600  goto basic_json_parser_32;
10601  }
10602 basic_json_parser_56:
10603  yyaccept = 3;
10604  m_marker = ++m_cursor;
10605  if ((m_limit - m_cursor) < 3)
10606  {
10607  fill_line_buffer(3); // LCOV_EXCL_LINE
10608  }
10609  yych = *m_cursor;
10610  if (yych <= 'D')
10611  {
10612  if (yych <= '/')
10613  {
10614  goto basic_json_parser_58;
10615  }
10616  if (yych <= '9')
10617  {
10618  goto basic_json_parser_56;
10619  }
10620  }
10621  else
10622  {
10623  if (yych <= 'E')
10624  {
10625  goto basic_json_parser_51;
10626  }
10627  if (yych == 'e')
10628  {
10629  goto basic_json_parser_51;
10630  }
10631  }
10632 basic_json_parser_58:
10633  {
10634  last_token_type = token_type::value_float;
10635  break;
10636  }
10637 basic_json_parser_59:
10638  yych = *++m_cursor;
10639  if (yych <= '/')
10640  {
10641  goto basic_json_parser_32;
10642  }
10643  if (yych >= ':')
10644  {
10645  goto basic_json_parser_32;
10646  }
10647 basic_json_parser_60:
10648  ++m_cursor;
10649  if (m_limit <= m_cursor)
10650  {
10651  fill_line_buffer(1); // LCOV_EXCL_LINE
10652  }
10653  yych = *m_cursor;
10654  if (yych <= '/')
10655  {
10656  goto basic_json_parser_58;
10657  }
10658  if (yych <= '9')
10659  {
10660  goto basic_json_parser_60;
10661  }
10662  goto basic_json_parser_58;
10663 basic_json_parser_62:
10664  yych = *++m_cursor;
10665  if (yych == 's')
10666  {
10667  goto basic_json_parser_66;
10668  }
10669  goto basic_json_parser_32;
10670 basic_json_parser_63:
10671  yych = *++m_cursor;
10672  if (yych == 'l')
10673  {
10674  goto basic_json_parser_67;
10675  }
10676  goto basic_json_parser_32;
10677 basic_json_parser_64:
10678  yych = *++m_cursor;
10679  if (yych == 'e')
10680  {
10681  goto basic_json_parser_69;
10682  }
10683  goto basic_json_parser_32;
10684 basic_json_parser_65:
10685  ++m_cursor;
10686  if (m_limit <= m_cursor)
10687  {
10688  fill_line_buffer(1); // LCOV_EXCL_LINE
10689  }
10690  yych = *m_cursor;
10691  if (yych <= '@')
10692  {
10693  if (yych <= '/')
10694  {
10695  goto basic_json_parser_32;
10696  }
10697  if (yych <= '9')
10698  {
10699  goto basic_json_parser_71;
10700  }
10701  goto basic_json_parser_32;
10702  }
10703  else
10704  {
10705  if (yych <= 'F')
10706  {
10707  goto basic_json_parser_71;
10708  }
10709  if (yych <= '`')
10710  {
10711  goto basic_json_parser_32;
10712  }
10713  if (yych <= 'f')
10714  {
10715  goto basic_json_parser_71;
10716  }
10717  goto basic_json_parser_32;
10718  }
10719 basic_json_parser_66:
10720  yych = *++m_cursor;
10721  if (yych == 'e')
10722  {
10723  goto basic_json_parser_72;
10724  }
10725  goto basic_json_parser_32;
10726 basic_json_parser_67:
10727  ++m_cursor;
10728  {
10729  last_token_type = token_type::literal_null;
10730  break;
10731  }
10732 basic_json_parser_69:
10733  ++m_cursor;
10734  {
10735  last_token_type = token_type::literal_true;
10736  break;
10737  }
10738 basic_json_parser_71:
10739  ++m_cursor;
10740  if (m_limit <= m_cursor)
10741  {
10742  fill_line_buffer(1); // LCOV_EXCL_LINE
10743  }
10744  yych = *m_cursor;
10745  if (yych <= '@')
10746  {
10747  if (yych <= '/')
10748  {
10749  goto basic_json_parser_32;
10750  }
10751  if (yych <= '9')
10752  {
10753  goto basic_json_parser_74;
10754  }
10755  goto basic_json_parser_32;
10756  }
10757  else
10758  {
10759  if (yych <= 'F')
10760  {
10761  goto basic_json_parser_74;
10762  }
10763  if (yych <= '`')
10764  {
10765  goto basic_json_parser_32;
10766  }
10767  if (yych <= 'f')
10768  {
10769  goto basic_json_parser_74;
10770  }
10771  goto basic_json_parser_32;
10772  }
10773 basic_json_parser_72:
10774  ++m_cursor;
10775  {
10776  last_token_type = token_type::literal_false;
10777  break;
10778  }
10779 basic_json_parser_74:
10780  ++m_cursor;
10781  if (m_limit <= m_cursor)
10782  {
10783  fill_line_buffer(1); // LCOV_EXCL_LINE
10784  }
10785  yych = *m_cursor;
10786  if (yych <= '@')
10787  {
10788  if (yych <= '/')
10789  {
10790  goto basic_json_parser_32;
10791  }
10792  if (yych <= '9')
10793  {
10794  goto basic_json_parser_30;
10795  }
10796  goto basic_json_parser_32;
10797  }
10798  else
10799  {
10800  if (yych <= 'F')
10801  {
10802  goto basic_json_parser_30;
10803  }
10804  if (yych <= '`')
10805  {
10806  goto basic_json_parser_32;
10807  }
10808  if (yych <= 'f')
10809  {
10810  goto basic_json_parser_30;
10811  }
10812  goto basic_json_parser_32;
10813  }
10814  }
10815 
10816  }
10817 
10818  return last_token_type;
10819  }
10820 
10849  void fill_line_buffer(size_t n = 0)
10850  {
10851  // if line buffer is used, m_content points to its data
10852  assert(m_line_buffer.empty()
10853  or m_content == reinterpret_cast<const lexer_char_t*>(m_line_buffer.data()));
10854 
10855  // if line buffer is used, m_limit is set past the end of its data
10856  assert(m_line_buffer.empty()
10857  or m_limit == m_content + m_line_buffer.size());
10858 
10859  // pointer relationships
10860  assert(m_content <= m_start);
10861  assert(m_start <= m_cursor);
10862  assert(m_cursor <= m_limit);
10863  assert(m_marker == nullptr or m_marker <= m_limit);
10864 
10865  // number of processed characters (p)
10866  const auto num_processed_chars = static_cast<size_t>(m_start - m_content);
10867  // offset for m_marker wrt. to m_start
10868  const auto offset_marker = (m_marker == nullptr) ? 0 : m_marker - m_start;
10869  // number of unprocessed characters (u)
10870  const auto offset_cursor = m_cursor - m_start;
10871 
10872  // no stream is used or end of file is reached
10873  if (m_stream == nullptr or m_stream->eof())
10874  {
10875  // m_start may or may not be pointing into m_line_buffer at
10876  // this point. We trust the standard library to do the right
10877  // thing. See http://stackoverflow.com/q/28142011/266378
10878  m_line_buffer.assign(m_start, m_limit);
10879 
10880  // append n characters to make sure that there is sufficient
10881  // space between m_cursor and m_limit
10882  m_line_buffer.append(1, '\x00');
10883  if (n > 0)
10884  {
10885  m_line_buffer.append(n - 1, '\x01');
10886  }
10887  }
10888  else
10889  {
10890  // delete processed characters from line buffer
10891  m_line_buffer.erase(0, num_processed_chars);
10892  // read next line from input stream
10893  m_line_buffer_tmp.clear();
10894  std::getline(*m_stream, m_line_buffer_tmp, '\n');
10895 
10896  // add line with newline symbol to the line buffer
10897  m_line_buffer += m_line_buffer_tmp;
10898  m_line_buffer.push_back('\n');
10899  }
10900 
10901  // set pointers
10902  m_content = reinterpret_cast<const lexer_char_t*>(m_line_buffer.data());
10903  assert(m_content != nullptr);
10904  m_start = m_content;
10905  m_marker = m_start + offset_marker;
10906  m_cursor = m_start + offset_cursor;
10907  m_limit = m_start + m_line_buffer.size();
10908  }
10909 
10911  string_t get_token_string() const
10912  {
10913  assert(m_start != nullptr);
10914  return string_t(reinterpret_cast<typename string_t::const_pointer>(m_start),
10915  static_cast<size_t>(m_cursor - m_start));
10916  }
10917 
10975  string_t get_string() const
10976  {
10977  assert(m_cursor - m_start >= 2);
10978 
10979  string_t result;
10980  result.reserve(static_cast<size_t>(m_cursor - m_start - 2));
10981 
10982  // iterate the result between the quotes
10983  for (const lexer_char_t* i = m_start + 1; i < m_cursor - 1; ++i)
10984  {
10985  // find next escape character
10986  auto e = std::find(i, m_cursor - 1, '\\');
10987  if (e != i)
10988  {
10989  // see https://github.com/nlohmann/json/issues/365#issuecomment-262874705
10990  for (auto k = i; k < e; k++)
10991  {
10992  result.push_back(static_cast<typename string_t::value_type>(*k));
10993  }
10994  i = e - 1; // -1 because of ++i
10995  }
10996  else
10997  {
10998  // processing escaped character
10999  // read next character
11000  ++i;
11001 
11002  switch (*i)
11003  {
11004  // the default escapes
11005  case 't':
11006  {
11007  result += "\t";
11008  break;
11009  }
11010  case 'b':
11011  {
11012  result += "\b";
11013  break;
11014  }
11015  case 'f':
11016  {
11017  result += "\f";
11018  break;
11019  }
11020  case 'n':
11021  {
11022  result += "\n";
11023  break;
11024  }
11025  case 'r':
11026  {
11027  result += "\r";
11028  break;
11029  }
11030  case '\\':
11031  {
11032  result += "\\";
11033  break;
11034  }
11035  case '/':
11036  {
11037  result += "/";
11038  break;
11039  }
11040  case '"':
11041  {
11042  result += "\"";
11043  break;
11044  }
11045 
11046  // unicode
11047  case 'u':
11048  {
11049  // get code xxxx from uxxxx
11050  auto codepoint = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>(i + 1),
11051  4).c_str(), nullptr, 16);
11052 
11053  // check if codepoint is a high surrogate
11054  if (codepoint >= 0xD800 and codepoint <= 0xDBFF)
11055  {
11056  // make sure there is a subsequent unicode
11057  if ((i + 6 >= m_limit) or * (i + 5) != '\\' or * (i + 6) != 'u')
11058  {
11059  JSON_THROW(std::invalid_argument("missing low surrogate"));
11060  }
11061 
11062  // get code yyyy from uxxxx\uyyyy
11063  auto codepoint2 = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>
11064  (i + 7), 4).c_str(), nullptr, 16);
11065  result += to_unicode(codepoint, codepoint2);
11066  // skip the next 10 characters (xxxx\uyyyy)
11067  i += 10;
11068  }
11069  else if (codepoint >= 0xDC00 and codepoint <= 0xDFFF)
11070  {
11071  // we found a lone low surrogate
11072  JSON_THROW(std::invalid_argument("missing high surrogate"));
11073  }
11074  else
11075  {
11076  // add unicode character(s)
11077  result += to_unicode(codepoint);
11078  // skip the next four characters (xxxx)
11079  i += 4;
11080  }
11081  break;
11082  }
11083  }
11084  }
11085  }
11086 
11087  return result;
11088  }
11089 
11090 
11100  struct strtonum
11101  {
11102  public:
11103  strtonum(const char* start, const char* end)
11104  : m_start(start), m_end(end)
11105  {}
11106 
11113  template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value>::type>
11114  bool to(T& val) const
11115  {
11116  return parse(val, std::is_integral<T>());
11117  }
11118 
11119  private:
11120  const char* const m_start = nullptr;
11121  const char* const m_end = nullptr;
11122 
11123  // floating-point conversion
11124 
11125  // overloaded wrappers for strtod/strtof/strtold
11126  // that will be called from parse<floating_point_t>
11127  static void strtof(float& f, const char* str, char** endptr)
11128  {
11129  f = std::strtof(str, endptr);
11130  }
11131 
11132  static void strtof(double& f, const char* str, char** endptr)
11133  {
11134  f = std::strtod(str, endptr);
11135  }
11136 
11137  static void strtof(long double& f, const char* str, char** endptr)
11138  {
11139  f = std::strtold(str, endptr);
11140  }
11141 
11142  template<typename T>
11143  bool parse(T& value, /*is_integral=*/std::false_type) const
11144  {
11145  // replace decimal separator with locale-specific version,
11146  // when necessary; data will point to either the original
11147  // string, or buf, or tempstr containing the fixed string.
11148  std::string tempstr;
11149  std::array<char, 64> buf;
11150  const size_t len = static_cast<size_t>(m_end - m_start);
11151 
11152  // lexer will reject empty numbers
11153  assert(len > 0);
11154 
11155  // since dealing with strtod family of functions, we're
11156  // getting the decimal point char from the C locale facilities
11157  // instead of C++'s numpunct facet of the current std::locale
11158  const auto loc = localeconv();
11159  assert(loc != nullptr);
11160  const char decimal_point_char = (loc->decimal_point == nullptr) ? '.' : loc->decimal_point[0];
11161 
11162  const char* data = m_start;
11163 
11164  if (decimal_point_char != '.')
11165  {
11166  const size_t ds_pos = static_cast<size_t>(std::find(m_start, m_end, '.') - m_start);
11167 
11168  if (ds_pos != len)
11169  {
11170  // copy the data into the local buffer or tempstr, if
11171  // buffer is too small; replace decimal separator, and
11172  // update data to point to the modified bytes
11173  if ((len + 1) < buf.size())
11174  {
11175  std::copy(m_start, m_end, buf.begin());
11176  buf[len] = 0;
11177  buf[ds_pos] = decimal_point_char;
11178  data = buf.data();
11179  }
11180  else
11181  {
11182  tempstr.assign(m_start, m_end);
11183  tempstr[ds_pos] = decimal_point_char;
11184  data = tempstr.c_str();
11185  }
11186  }
11187  }
11188 
11189  char* endptr = nullptr;
11190  value = 0;
11191  // this calls appropriate overload depending on T
11192  strtof(value, data, &endptr);
11193 
11194  // parsing was successful iff strtof parsed exactly the number
11195  // of characters determined by the lexer (len)
11196  const bool ok = (endptr == (data + len));
11197 
11198  if (ok and (value == static_cast<T>(0.0)) and (*data == '-'))
11199  {
11200  // some implementations forget to negate the zero
11201  value = -0.0;
11202  }
11203 
11204  return ok;
11205  }
11206 
11207  // integral conversion
11208 
11209  signed long long parse_integral(char** endptr, /*is_signed*/std::true_type) const
11210  {
11211  return std::strtoll(m_start, endptr, 10);
11212  }
11213 
11214  unsigned long long parse_integral(char** endptr, /*is_signed*/std::false_type) const
11215  {
11216  return std::strtoull(m_start, endptr, 10);
11217  }
11218 
11219  template<typename T>
11220  bool parse(T& value, /*is_integral=*/std::true_type) const
11221  {
11222  char* endptr = nullptr;
11223  errno = 0; // these are thread-local
11224  const auto x = parse_integral(&endptr, std::is_signed<T>());
11225 
11226  // called right overload?
11227  static_assert(std::is_signed<T>() == std::is_signed<decltype(x)>(), "");
11228 
11229  value = static_cast<T>(x);
11230 
11231  return (x == static_cast<decltype(x)>(value)) // x fits into destination T
11232  and (x < 0) == (value < 0) // preserved sign
11233  //and ((x != 0) or is_integral()) // strto[u]ll did nto fail
11234  and (errno == 0) // strto[u]ll did not overflow
11235  and (m_start < m_end) // token was not empty
11236  and (endptr == m_end); // parsed entire token exactly
11237  }
11238  };
11239 
11259  bool get_number(basic_json& result, const token_type token) const
11260  {
11261  assert(m_start != nullptr);
11262  assert(m_start < m_cursor);
11263  assert((token == token_type::value_unsigned) or
11264  (token == token_type::value_integer) or
11265  (token == token_type::value_float));
11266 
11267  strtonum num_converter(reinterpret_cast<const char*>(m_start),
11268  reinterpret_cast<const char*>(m_cursor));
11269 
11270  switch (token)
11271  {
11272  case lexer::token_type::value_unsigned:
11273  {
11274  number_unsigned_t val;
11275  if (num_converter.to(val))
11276  {
11277  // parsing successful
11278  result.m_type = value_t::number_unsigned;
11279  result.m_value = val;
11280  return true;
11281  }
11282  break;
11283  }
11284 
11285  case lexer::token_type::value_integer:
11286  {
11287  number_integer_t val;
11288  if (num_converter.to(val))
11289  {
11290  // parsing successful
11291  result.m_type = value_t::number_integer;
11292  result.m_value = val;
11293  return true;
11294  }
11295  break;
11296  }
11297 
11298  default:
11299  {
11300  break;
11301  }
11302  }
11303 
11304  // parse float (either explicitly or because a previous conversion
11305  // failed)
11306  number_float_t val;
11307  if (num_converter.to(val))
11308  {
11309  // parsing successful
11310  result.m_type = value_t::number_float;
11311  result.m_value = val;
11312 
11313  // replace infinity and NAN by null
11314  if (not std::isfinite(result.m_value.number_float))
11315  {
11316  result.m_type = value_t::null;
11317  result.m_value = basic_json::json_value();
11318  }
11319 
11320  return true;
11321  }
11322 
11323  // couldn't parse number in any format
11324  return false;
11325  }
11326 
11327  private:
11329  std::istream* m_stream = nullptr;
11331  string_t m_line_buffer {};
11333  string_t m_line_buffer_tmp {};
11335  const lexer_char_t* m_content = nullptr;
11337  const lexer_char_t* m_start = nullptr;
11339  const lexer_char_t* m_marker = nullptr;
11341  const lexer_char_t* m_cursor = nullptr;
11343  const lexer_char_t* m_limit = nullptr;
11345  token_type last_token_type = token_type::end_of_input;
11346  };
11347 
11353  class parser
11354  {
11355  public:
11357  parser(const char* buff, const parser_callback_t cb = nullptr)
11358  : callback(cb),
11359  m_lexer(reinterpret_cast<const typename lexer::lexer_char_t*>(buff), std::strlen(buff))
11360  {}
11361 
11363  parser(std::istream& is, const parser_callback_t cb = nullptr)
11364  : callback(cb), m_lexer(is)
11365  {}
11366 
11368  template<class IteratorType, typename std::enable_if<
11369  std::is_same<typename std::iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value
11370  , int>::type
11371  = 0>
11372  parser(IteratorType first, IteratorType last, const parser_callback_t cb = nullptr)
11373  : callback(cb),
11374  m_lexer(reinterpret_cast<const typename lexer::lexer_char_t*>(&(*first)),
11375  static_cast<size_t>(std::distance(first, last)))
11376  {}
11377 
11379  basic_json parse()
11380  {
11381  // read first token
11382  get_token();
11383 
11384  basic_json result = parse_internal(true);
11385  result.assert_invariant();
11386 
11387  expect(lexer::token_type::end_of_input);
11388 
11389  // return parser result and replace it with null in case the
11390  // top-level value was discarded by the callback function
11391  return result.is_discarded() ? basic_json() : std::move(result);
11392  }
11393 
11394  private:
11396  basic_json parse_internal(bool keep)
11397  {
11398  auto result = basic_json(value_t::discarded);
11399 
11400  switch (last_token)
11401  {
11402  case lexer::token_type::begin_object:
11403  {
11404  if (keep and (not callback
11405  or ((keep = callback(depth++, parse_event_t::object_start, result)) != 0)))
11406  {
11407  // explicitly set result to object to cope with {}
11408  result.m_type = value_t::object;
11409  result.m_value = value_t::object;
11410  }
11411 
11412  // read next token
11413  get_token();
11414 
11415  // closing } -> we are done
11416  if (last_token == lexer::token_type::end_object)
11417  {
11418  get_token();
11419  if (keep and callback and not callback(--depth, parse_event_t::object_end, result))
11420  {
11421  result = basic_json(value_t::discarded);
11422  }
11423  return result;
11424  }
11425 
11426  // no comma is expected here
11427  unexpect(lexer::token_type::value_separator);
11428 
11429  // otherwise: parse key-value pairs
11430  do
11431  {
11432  // ugly, but could be fixed with loop reorganization
11433  if (last_token == lexer::token_type::value_separator)
11434  {
11435  get_token();
11436  }
11437 
11438  // store key
11439  expect(lexer::token_type::value_string);
11440  const auto key = m_lexer.get_string();
11441 
11442  bool keep_tag = false;
11443  if (keep)
11444  {
11445  if (callback)
11446  {
11447  basic_json k(key);
11448  keep_tag = callback(depth, parse_event_t::key, k);
11449  }
11450  else
11451  {
11452  keep_tag = true;
11453  }
11454  }
11455 
11456  // parse separator (:)
11457  get_token();
11458  expect(lexer::token_type::name_separator);
11459 
11460  // parse and add value
11461  get_token();
11462  auto value = parse_internal(keep);
11463  if (keep and keep_tag and not value.is_discarded())
11464  {
11465  result[key] = std::move(value);
11466  }
11467  }
11468  while (last_token == lexer::token_type::value_separator);
11469 
11470  // closing }
11471  expect(lexer::token_type::end_object);
11472  get_token();
11473  if (keep and callback and not callback(--depth, parse_event_t::object_end, result))
11474  {
11475  result = basic_json(value_t::discarded);
11476  }
11477 
11478  return result;
11479  }
11480 
11481  case lexer::token_type::begin_array:
11482  {
11483  if (keep and (not callback
11484  or ((keep = callback(depth++, parse_event_t::array_start, result)) != 0)))
11485  {
11486  // explicitly set result to object to cope with []
11487  result.m_type = value_t::array;
11488  result.m_value = value_t::array;
11489  }
11490 
11491  // read next token
11492  get_token();
11493 
11494  // closing ] -> we are done
11495  if (last_token == lexer::token_type::end_array)
11496  {
11497  get_token();
11498  if (callback and not callback(--depth, parse_event_t::array_end, result))
11499  {
11500  result = basic_json(value_t::discarded);
11501  }
11502  return result;
11503  }
11504 
11505  // no comma is expected here
11506  unexpect(lexer::token_type::value_separator);
11507 
11508  // otherwise: parse values
11509  do
11510  {
11511  // ugly, but could be fixed with loop reorganization
11512  if (last_token == lexer::token_type::value_separator)
11513  {
11514  get_token();
11515  }
11516 
11517  // parse value
11518  auto value = parse_internal(keep);
11519  if (keep and not value.is_discarded())
11520  {
11521  result.push_back(std::move(value));
11522  }
11523  }
11524  while (last_token == lexer::token_type::value_separator);
11525 
11526  // closing ]
11527  expect(lexer::token_type::end_array);
11528  get_token();
11529  if (keep and callback and not callback(--depth, parse_event_t::array_end, result))
11530  {
11531  result = basic_json(value_t::discarded);
11532  }
11533 
11534  return result;
11535  }
11536 
11537  case lexer::token_type::literal_null:
11538  {
11539  get_token();
11540  result.m_type = value_t::null;
11541  break;
11542  }
11543 
11544  case lexer::token_type::value_string:
11545  {
11546  const auto s = m_lexer.get_string();
11547  get_token();
11548  result = basic_json(s);
11549  break;
11550  }
11551 
11552  case lexer::token_type::literal_true:
11553  {
11554  get_token();
11555  result.m_type = value_t::boolean;
11556  result.m_value = true;
11557  break;
11558  }
11559 
11560  case lexer::token_type::literal_false:
11561  {
11562  get_token();
11563  result.m_type = value_t::boolean;
11564  result.m_value = false;
11565  break;
11566  }
11567 
11568  case lexer::token_type::value_unsigned:
11569  case lexer::token_type::value_integer:
11570  case lexer::token_type::value_float:
11571  {
11572  m_lexer.get_number(result, last_token);
11573  get_token();
11574  break;
11575  }
11576 
11577  default:
11578  {
11579  // the last token was unexpected
11580  unexpect(last_token);
11581  }
11582  }
11583 
11584  if (keep and callback and not callback(depth, parse_event_t::value, result))
11585  {
11586  result = basic_json(value_t::discarded);
11587  }
11588  return result;
11589  }
11590 
11592  typename lexer::token_type get_token()
11593  {
11594  last_token = m_lexer.scan();
11595  return last_token;
11596  }
11597 
11598  void expect(typename lexer::token_type t) const
11599  {
11600  if (t != last_token)
11601  {
11602  std::string error_msg = "parse error - unexpected ";
11603  error_msg += (last_token == lexer::token_type::parse_error ? ("'" + m_lexer.get_token_string() +
11604  "'") :
11605  lexer::token_type_name(last_token));
11606  error_msg += "; expected " + lexer::token_type_name(t);
11607  JSON_THROW(std::invalid_argument(error_msg));
11608  }
11609  }
11610 
11611  void unexpect(typename lexer::token_type t) const
11612  {
11613  if (t == last_token)
11614  {
11615  std::string error_msg = "parse error - unexpected ";
11616  error_msg += (last_token == lexer::token_type::parse_error ? ("'" + m_lexer.get_token_string() +
11617  "'") :
11618  lexer::token_type_name(last_token));
11619  JSON_THROW(std::invalid_argument(error_msg));
11620  }
11621  }
11622 
11623  private:
11625  int depth = 0;
11627  const parser_callback_t callback = nullptr;
11629  typename lexer::token_type last_token = lexer::token_type::uninitialized;
11631  lexer m_lexer;
11632  };
11633 
11634  public:
11647  {
11649  friend class basic_json;
11650 
11651  public:
11674  explicit json_pointer(const std::string& s = "")
11675  : reference_tokens(split(s))
11676  {}
11677 
11693  std::string to_string() const noexcept
11694  {
11695  return std::accumulate(reference_tokens.begin(),
11696  reference_tokens.end(), std::string{},
11697  [](const std::string & a, const std::string & b)
11698  {
11699  return a + "/" + escape(b);
11700  });
11701  }
11702 
11704  operator std::string() const
11705  {
11706  return to_string();
11707  }
11708 
11709  private:
11711  std::string pop_back()
11712  {
11713  if (is_root())
11714  {
11715  JSON_THROW(std::domain_error("JSON pointer has no parent"));
11716  }
11717 
11718  auto last = reference_tokens.back();
11719  reference_tokens.pop_back();
11720  return last;
11721  }
11722 
11724  bool is_root() const
11725  {
11726  return reference_tokens.empty();
11727  }
11728 
11729  json_pointer top() const
11730  {
11731  if (is_root())
11732  {
11733  JSON_THROW(std::domain_error("JSON pointer has no parent"));
11734  }
11735 
11736  json_pointer result = *this;
11737  result.reference_tokens = {reference_tokens[0]};
11738  return result;
11739  }
11740 
11746  reference get_and_create(reference j) const
11747  {
11748  pointer result = &j;
11749 
11750  // in case no reference tokens exist, return a reference to the
11751  // JSON value j which will be overwritten by a primitive value
11752  for (const auto& reference_token : reference_tokens)
11753  {
11754  switch (result->m_type)
11755  {
11756  case value_t::null:
11757  {
11758  if (reference_token == "0")
11759  {
11760  // start a new array if reference token is 0
11761  result = &result->operator[](0);
11762  }
11763  else
11764  {
11765  // start a new object otherwise
11766  result = &result->operator[](reference_token);
11767  }
11768  break;
11769  }
11770 
11771  case value_t::object:
11772  {
11773  // create an entry in the object
11774  result = &result->operator[](reference_token);
11775  break;
11776  }
11777 
11778  case value_t::array:
11779  {
11780  // create an entry in the array
11781  result = &result->operator[](static_cast<size_type>(std::stoi(reference_token)));
11782  break;
11783  }
11784 
11785  /*
11786  The following code is only reached if there exists a
11787  reference token _and_ the current value is primitive. In
11788  this case, we have an error situation, because primitive
11789  values may only occur as single value; that is, with an
11790  empty list of reference tokens.
11791  */
11792  default:
11793  {
11794  JSON_THROW(std::domain_error("invalid value to unflatten"));
11795  }
11796  }
11797  }
11798 
11799  return *result;
11800  }
11801 
11821  reference get_unchecked(pointer ptr) const
11822  {
11823  for (const auto& reference_token : reference_tokens)
11824  {
11825  // convert null values to arrays or objects before continuing
11826  if (ptr->m_type == value_t::null)
11827  {
11828  // check if reference token is a number
11829  const bool nums = std::all_of(reference_token.begin(),
11830  reference_token.end(),
11831  [](const char x)
11832  {
11833  return std::isdigit(x);
11834  });
11835 
11836  // change value to array for numbers or "-" or to object
11837  // otherwise
11838  if (nums or reference_token == "-")
11839  {
11840  *ptr = value_t::array;
11841  }
11842  else
11843  {
11844  *ptr = value_t::object;
11845  }
11846  }
11847 
11848  switch (ptr->m_type)
11849  {
11850  case value_t::object:
11851  {
11852  // use unchecked object access
11853  ptr = &ptr->operator[](reference_token);
11854  break;
11855  }
11856 
11857  case value_t::array:
11858  {
11859  // error condition (cf. RFC 6901, Sect. 4)
11860  if (reference_token.size() > 1 and reference_token[0] == '0')
11861  {
11862  JSON_THROW(std::domain_error("array index must not begin with '0'"));
11863  }
11864 
11865  if (reference_token == "-")
11866  {
11867  // explicitly treat "-" as index beyond the end
11868  ptr = &ptr->operator[](ptr->m_value.array->size());
11869  }
11870  else
11871  {
11872  // convert array index to number; unchecked access
11873  ptr = &ptr->operator[](static_cast<size_type>(std::stoi(reference_token)));
11874  }
11875  break;
11876  }
11877 
11878  default:
11879  {
11880  JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'"));
11881  }
11882  }
11883  }
11884 
11885  return *ptr;
11886  }
11887 
11888  reference get_checked(pointer ptr) const
11889  {
11890  for (const auto& reference_token : reference_tokens)
11891  {
11892  switch (ptr->m_type)
11893  {
11894  case value_t::object:
11895  {
11896  // note: at performs range check
11897  ptr = &ptr->at(reference_token);
11898  break;
11899  }
11900 
11901  case value_t::array:
11902  {
11903  if (reference_token == "-")
11904  {
11905  // "-" always fails the range check
11906  JSON_THROW(std::out_of_range("array index '-' (" +
11907  std::to_string(ptr->m_value.array->size()) +
11908  ") is out of range"));
11909  }
11910 
11911  // error condition (cf. RFC 6901, Sect. 4)
11912  if (reference_token.size() > 1 and reference_token[0] == '0')
11913  {
11914  JSON_THROW(std::domain_error("array index must not begin with '0'"));
11915  }
11916 
11917  // note: at performs range check
11918  ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token)));
11919  break;
11920  }
11921 
11922  default:
11923  {
11924  JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'"));
11925  }
11926  }
11927  }
11928 
11929  return *ptr;
11930  }
11931 
11940  const_reference get_unchecked(const_pointer ptr) const
11941  {
11942  for (const auto& reference_token : reference_tokens)
11943  {
11944  switch (ptr->m_type)
11945  {
11946  case value_t::object:
11947  {
11948  // use unchecked object access
11949  ptr = &ptr->operator[](reference_token);
11950  break;
11951  }
11952 
11953  case value_t::array:
11954  {
11955  if (reference_token == "-")
11956  {
11957  // "-" cannot be used for const access
11958  JSON_THROW(std::out_of_range("array index '-' (" +
11959  std::to_string(ptr->m_value.array->size()) +
11960  ") is out of range"));
11961  }
11962 
11963  // error condition (cf. RFC 6901, Sect. 4)
11964  if (reference_token.size() > 1 and reference_token[0] == '0')
11965  {
11966  JSON_THROW(std::domain_error("array index must not begin with '0'"));
11967  }
11968 
11969  // use unchecked array access
11970  ptr = &ptr->operator[](static_cast<size_type>(std::stoi(reference_token)));
11971  break;
11972  }
11973 
11974  default:
11975  {
11976  JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'"));
11977  }
11978  }
11979  }
11980 
11981  return *ptr;
11982  }
11983 
11984  const_reference get_checked(const_pointer ptr) const
11985  {
11986  for (const auto& reference_token : reference_tokens)
11987  {
11988  switch (ptr->m_type)
11989  {
11990  case value_t::object:
11991  {
11992  // note: at performs range check
11993  ptr = &ptr->at(reference_token);
11994  break;
11995  }
11996 
11997  case value_t::array:
11998  {
11999  if (reference_token == "-")
12000  {
12001  // "-" always fails the range check
12002  JSON_THROW(std::out_of_range("array index '-' (" +
12003  std::to_string(ptr->m_value.array->size()) +
12004  ") is out of range"));
12005  }
12006 
12007  // error condition (cf. RFC 6901, Sect. 4)
12008  if (reference_token.size() > 1 and reference_token[0] == '0')
12009  {
12010  JSON_THROW(std::domain_error("array index must not begin with '0'"));
12011  }
12012 
12013  // note: at performs range check
12014  ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token)));
12015  break;
12016  }
12017 
12018  default:
12019  {
12020  JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'"));
12021  }
12022  }
12023  }
12024 
12025  return *ptr;
12026  }
12027 
12029  static std::vector<std::string> split(const std::string& reference_string)
12030  {
12031  std::vector<std::string> result;
12032 
12033  // special case: empty reference string -> no reference tokens
12034  if (reference_string.empty())
12035  {
12036  return result;
12037  }
12038 
12039  // check if nonempty reference string begins with slash
12040  if (reference_string[0] != '/')
12041  {
12042  JSON_THROW(std::domain_error("JSON pointer must be empty or begin with '/'"));
12043  }
12044 
12045  // extract the reference tokens:
12046  // - slash: position of the last read slash (or end of string)
12047  // - start: position after the previous slash
12048  for (
12049  // search for the first slash after the first character
12050  size_t slash = reference_string.find_first_of('/', 1),
12051  // set the beginning of the first reference token
12052  start = 1;
12053  // we can stop if start == string::npos+1 = 0
12054  start != 0;
12055  // set the beginning of the next reference token
12056  // (will eventually be 0 if slash == std::string::npos)
12057  start = slash + 1,
12058  // find next slash
12059  slash = reference_string.find_first_of('/', start))
12060  {
12061  // use the text between the beginning of the reference token
12062  // (start) and the last slash (slash).
12063  auto reference_token = reference_string.substr(start, slash - start);
12064 
12065  // check reference tokens are properly escaped
12066  for (size_t pos = reference_token.find_first_of('~');
12067  pos != std::string::npos;
12068  pos = reference_token.find_first_of('~', pos + 1))
12069  {
12070  assert(reference_token[pos] == '~');
12071 
12072  // ~ must be followed by 0 or 1
12073  if (pos == reference_token.size() - 1 or
12074  (reference_token[pos + 1] != '0' and
12075  reference_token[pos + 1] != '1'))
12076  {
12077  JSON_THROW(std::domain_error("escape error: '~' must be followed with '0' or '1'"));
12078  }
12079  }
12080 
12081  // finally, store the reference token
12082  unescape(reference_token);
12083  result.push_back(reference_token);
12084  }
12085 
12086  return result;
12087  }
12088 
12089  private:
12102  static void replace_substring(std::string& s,
12103  const std::string& f,
12104  const std::string& t)
12105  {
12106  assert(not f.empty());
12107 
12108  for (
12109  size_t pos = s.find(f); // find first occurrence of f
12110  pos != std::string::npos; // make sure f was found
12111  s.replace(pos, f.size(), t), // replace with t
12112  pos = s.find(f, pos + t.size()) // find next occurrence of f
12113  );
12114  }
12115 
12117  static std::string escape(std::string s)
12118  {
12119  // escape "~"" to "~0" and "/" to "~1"
12120  replace_substring(s, "~", "~0");
12121  replace_substring(s, "/", "~1");
12122  return s;
12123  }
12124 
12126  static void unescape(std::string& s)
12127  {
12128  // first transform any occurrence of the sequence '~1' to '/'
12129  replace_substring(s, "~1", "/");
12130  // then transform any occurrence of the sequence '~0' to '~'
12131  replace_substring(s, "~0", "~");
12132  }
12133 
12141  static void flatten(const std::string& reference_string,
12142  const basic_json& value,
12143  basic_json& result)
12144  {
12145  switch (value.m_type)
12146  {
12147  case value_t::array:
12148  {
12149  if (value.m_value.array->empty())
12150  {
12151  // flatten empty array as null
12152  result[reference_string] = nullptr;
12153  }
12154  else
12155  {
12156  // iterate array and use index as reference string
12157  for (size_t i = 0; i < value.m_value.array->size(); ++i)
12158  {
12159  flatten(reference_string + "/" + std::to_string(i),
12160  value.m_value.array->operator[](i), result);
12161  }
12162  }
12163  break;
12164  }
12165 
12166  case value_t::object:
12167  {
12168  if (value.m_value.object->empty())
12169  {
12170  // flatten empty object as null
12171  result[reference_string] = nullptr;
12172  }
12173  else
12174  {
12175  // iterate object and use keys as reference string
12176  for (const auto& element : *value.m_value.object)
12177  {
12178  flatten(reference_string + "/" + escape(element.first),
12179  element.second, result);
12180  }
12181  }
12182  break;
12183  }
12184 
12185  default:
12186  {
12187  // add primitive value with its reference string
12188  result[reference_string] = value;
12189  break;
12190  }
12191  }
12192  }
12193 
12199  static basic_json unflatten(const basic_json& value)
12200  {
12201  if (not value.is_object())
12202  {
12203  JSON_THROW(std::domain_error("only objects can be unflattened"));
12204  }
12205 
12206  basic_json result;
12207 
12208  // iterate the JSON object values
12209  for (const auto& element : *value.m_value.object)
12210  {
12211  if (not element.second.is_primitive())
12212  {
12213  JSON_THROW(std::domain_error("values in object must be primitive"));
12214  }
12215 
12216  // assign value to reference pointed to by JSON pointer; Note
12217  // that if the JSON pointer is "" (i.e., points to the whole
12218  // value), function get_and_create returns a reference to
12219  // result itself. An assignment will then create a primitive
12220  // value.
12221  json_pointer(element.first).get_and_create(result) = element.second;
12222  }
12223 
12224  return result;
12225  }
12226 
12227  private:
12228  friend bool operator==(json_pointer const& lhs,
12229  json_pointer const& rhs) noexcept
12230  {
12231  return lhs.reference_tokens == rhs.reference_tokens;
12232  }
12233 
12234  friend bool operator!=(json_pointer const& lhs,
12235  json_pointer const& rhs) noexcept
12236  {
12237  return !(lhs == rhs);
12238  }
12239 
12241  std::vector<std::string> reference_tokens {};
12242  };
12243 
12245  // JSON Pointer support //
12247 
12250 
12285  {
12286  return ptr.get_unchecked(this);
12287  }
12288 
12312  {
12313  return ptr.get_unchecked(this);
12314  }
12315 
12337  {
12338  return ptr.get_checked(this);
12339  }
12340 
12361  const_reference at(const json_pointer& ptr) const
12362  {
12363  return ptr.get_checked(this);
12364  }
12365 
12389  {
12390  basic_json result(value_t::object);
12391  json_pointer::flatten("", *this, result);
12392  return result;
12393  }
12394 
12423  {
12424  return json_pointer::unflatten(*this);
12425  }
12426 
12428 
12430  // JSON Patch functions //
12432 
12435 
12472  basic_json patch(const basic_json& json_patch) const
12473  {
12474  // make a working copy to apply the patch to
12475  basic_json result = *this;
12476 
12477  // the valid JSON Patch operations
12478  enum class patch_operations {add, remove, replace, move, copy, test, invalid};
12479 
12480  const auto get_op = [](const std::string op)
12481  {
12482  if (op == "add")
12483  {
12484  return patch_operations::add;
12485  }
12486  if (op == "remove")
12487  {
12488  return patch_operations::remove;
12489  }
12490  if (op == "replace")
12491  {
12492  return patch_operations::replace;
12493  }
12494  if (op == "move")
12495  {
12496  return patch_operations::move;
12497  }
12498  if (op == "copy")
12499  {
12500  return patch_operations::copy;
12501  }
12502  if (op == "test")
12503  {
12504  return patch_operations::test;
12505  }
12506 
12507  return patch_operations::invalid;
12508  };
12509 
12510  // wrapper for "add" operation; add value at ptr
12511  const auto operation_add = [&result](json_pointer & ptr, basic_json val)
12512  {
12513  // adding to the root of the target document means replacing it
12514  if (ptr.is_root())
12515  {
12516  result = val;
12517  }
12518  else
12519  {
12520  // make sure the top element of the pointer exists
12521  json_pointer top_pointer = ptr.top();
12522  if (top_pointer != ptr)
12523  {
12524  result.at(top_pointer);
12525  }
12526 
12527  // get reference to parent of JSON pointer ptr
12528  const auto last_path = ptr.pop_back();
12529  basic_json& parent = result[ptr];
12530 
12531  switch (parent.m_type)
12532  {
12533  case value_t::null:
12534  case value_t::object:
12535  {
12536  // use operator[] to add value
12537  parent[last_path] = val;
12538  break;
12539  }
12540 
12541  case value_t::array:
12542  {
12543  if (last_path == "-")
12544  {
12545  // special case: append to back
12546  parent.push_back(val);
12547  }
12548  else
12549  {
12550  const auto idx = std::stoi(last_path);
12551  if (static_cast<size_type>(idx) > parent.size())
12552  {
12553  // avoid undefined behavior
12554  JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range"));
12555  }
12556  else
12557  {
12558  // default case: insert add offset
12559  parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
12560  }
12561  }
12562  break;
12563  }
12564 
12565  default:
12566  {
12567  // if there exists a parent it cannot be primitive
12568  assert(false); // LCOV_EXCL_LINE
12569  }
12570  }
12571  }
12572  };
12573 
12574  // wrapper for "remove" operation; remove value at ptr
12575  const auto operation_remove = [&result](json_pointer & ptr)
12576  {
12577  // get reference to parent of JSON pointer ptr
12578  const auto last_path = ptr.pop_back();
12579  basic_json& parent = result.at(ptr);
12580 
12581  // remove child
12582  if (parent.is_object())
12583  {
12584  // perform range check
12585  auto it = parent.find(last_path);
12586  if (it != parent.end())
12587  {
12588  parent.erase(it);
12589  }
12590  else
12591  {
12592  JSON_THROW(std::out_of_range("key '" + last_path + "' not found"));
12593  }
12594  }
12595  else if (parent.is_array())
12596  {
12597  // note erase performs range check
12598  parent.erase(static_cast<size_type>(std::stoi(last_path)));
12599  }
12600  };
12601 
12602  // type check
12603  if (not json_patch.is_array())
12604  {
12605  // a JSON patch must be an array of objects
12606  JSON_THROW(std::invalid_argument("JSON patch must be an array of objects"));
12607  }
12608 
12609  // iterate and apply the operations
12610  for (const auto& val : json_patch)
12611  {
12612  // wrapper to get a value for an operation
12613  const auto get_value = [&val](const std::string & op,
12614  const std::string & member,
12615  bool string_type) -> basic_json&
12616  {
12617  // find value
12618  auto it = val.m_value.object->find(member);
12619 
12620  // context-sensitive error message
12621  const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
12622 
12623  // check if desired value is present
12624  if (it == val.m_value.object->end())
12625  {
12626  JSON_THROW(std::invalid_argument(error_msg + " must have member '" + member + "'"));
12627  }
12628 
12629  // check if result is of type string
12630  if (string_type and not it->second.is_string())
12631  {
12632  JSON_THROW(std::invalid_argument(error_msg + " must have string member '" + member + "'"));
12633  }
12634 
12635  // no error: return value
12636  return it->second;
12637  };
12638 
12639  // type check
12640  if (not val.is_object())
12641  {
12642  JSON_THROW(std::invalid_argument("JSON patch must be an array of objects"));
12643  }
12644 
12645  // collect mandatory members
12646  const std::string op = get_value("op", "op", true);
12647  const std::string path = get_value(op, "path", true);
12648  json_pointer ptr(path);
12649 
12650  switch (get_op(op))
12651  {
12652  case patch_operations::add:
12653  {
12654  operation_add(ptr, get_value("add", "value", false));
12655  break;
12656  }
12657 
12658  case patch_operations::remove:
12659  {
12660  operation_remove(ptr);
12661  break;
12662  }
12663 
12664  case patch_operations::replace:
12665  {
12666  // the "path" location must exist - use at()
12667  result.at(ptr) = get_value("replace", "value", false);
12668  break;
12669  }
12670 
12671  case patch_operations::move:
12672  {
12673  const std::string from_path = get_value("move", "from", true);
12674  json_pointer from_ptr(from_path);
12675 
12676  // the "from" location must exist - use at()
12677  basic_json v = result.at(from_ptr);
12678 
12679  // The move operation is functionally identical to a
12680  // "remove" operation on the "from" location, followed
12681  // immediately by an "add" operation at the target
12682  // location with the value that was just removed.
12683  operation_remove(from_ptr);
12684  operation_add(ptr, v);
12685  break;
12686  }
12687 
12688  case patch_operations::copy:
12689  {
12690  const std::string from_path = get_value("copy", "from", true);;
12691  const json_pointer from_ptr(from_path);
12692 
12693  // the "from" location must exist - use at()
12694  result[ptr] = result.at(from_ptr);
12695  break;
12696  }
12697 
12698  case patch_operations::test:
12699  {
12700  bool success = false;
12701  JSON_TRY
12702  {
12703  // check if "value" matches the one at "path"
12704  // the "path" location must exist - use at()
12705  success = (result.at(ptr) == get_value("test", "value", false));
12706  }
12707  JSON_CATCH (std::out_of_range&)
12708  {
12709  // ignore out of range errors: success remains false
12710  }
12711 
12712  // throw an exception if test fails
12713  if (not success)
12714  {
12715  JSON_THROW(std::domain_error("unsuccessful: " + val.dump()));
12716  }
12717 
12718  break;
12719  }
12720 
12721  case patch_operations::invalid:
12722  {
12723  // op must be "add", "remove", "replace", "move", "copy", or
12724  // "test"
12725  JSON_THROW(std::invalid_argument("operation value '" + op + "' is invalid"));
12726  }
12727  }
12728  }
12729 
12730  return result;
12731  }
12732 
12765  static basic_json diff(const basic_json& source,
12766  const basic_json& target,
12767  const std::string& path = "")
12768  {
12769  // the patch
12770  basic_json result(value_t::array);
12771 
12772  // if the values are the same, return empty patch
12773  if (source == target)
12774  {
12775  return result;
12776  }
12777 
12778  if (source.type() != target.type())
12779  {
12780  // different types: replace value
12781  result.push_back(
12782  {
12783  {"op", "replace"},
12784  {"path", path},
12785  {"value", target}
12786  });
12787  }
12788  else
12789  {
12790  switch (source.type())
12791  {
12792  case value_t::array:
12793  {
12794  // first pass: traverse common elements
12795  size_t i = 0;
12796  while (i < source.size() and i < target.size())
12797  {
12798  // recursive call to compare array values at index i
12799  auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
12800  result.insert(result.end(), temp_diff.begin(), temp_diff.end());
12801  ++i;
12802  }
12803 
12804  // i now reached the end of at least one array
12805  // in a second pass, traverse the remaining elements
12806 
12807  // remove my remaining elements
12808  const auto end_index = static_cast<difference_type>(result.size());
12809  while (i < source.size())
12810  {
12811  // add operations in reverse order to avoid invalid
12812  // indices
12813  result.insert(result.begin() + end_index, object(
12814  {
12815  {"op", "remove"},
12816  {"path", path + "/" + std::to_string(i)}
12817  }));
12818  ++i;
12819  }
12820 
12821  // add other remaining elements
12822  while (i < target.size())
12823  {
12824  result.push_back(
12825  {
12826  {"op", "add"},
12827  {"path", path + "/" + std::to_string(i)},
12828  {"value", target[i]}
12829  });
12830  ++i;
12831  }
12832 
12833  break;
12834  }
12835 
12836  case value_t::object:
12837  {
12838  // first pass: traverse this object's elements
12839  for (auto it = source.begin(); it != source.end(); ++it)
12840  {
12841  // escape the key name to be used in a JSON patch
12842  const auto key = json_pointer::escape(it.key());
12843 
12844  if (target.find(it.key()) != target.end())
12845  {
12846  // recursive call to compare object values at key it
12847  auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
12848  result.insert(result.end(), temp_diff.begin(), temp_diff.end());
12849  }
12850  else
12851  {
12852  // found a key that is not in o -> remove it
12853  result.push_back(object(
12854  {
12855  {"op", "remove"},
12856  {"path", path + "/" + key}
12857  }));
12858  }
12859  }
12860 
12861  // second pass: traverse other object's elements
12862  for (auto it = target.begin(); it != target.end(); ++it)
12863  {
12864  if (source.find(it.key()) == source.end())
12865  {
12866  // found a key that is not in this -> add it
12867  const auto key = json_pointer::escape(it.key());
12868  result.push_back(
12869  {
12870  {"op", "add"},
12871  {"path", path + "/" + key},
12872  {"value", it.value()}
12873  });
12874  }
12875  }
12876 
12877  break;
12878  }
12879 
12880  default:
12881  {
12882  // both primitive type: replace value
12883  result.push_back(
12884  {
12885  {"op", "replace"},
12886  {"path", path},
12887  {"value", target}
12888  });
12889  break;
12890  }
12891  }
12892  }
12893 
12894  return result;
12895  }
12896 
12898 };
12899 
12901 // presets //
12903 
12913 } // namespace nlohmann
12914 
12915 
12917 // nonmember support //
12919 
12920 // specialization of std::swap, and std::hash
12921 namespace std
12922 {
12928 template<>
12929 inline void swap(nlohmann::json& j1,
12930  nlohmann::json& j2) noexcept(
12931  is_nothrow_move_constructible<nlohmann::json>::value and
12932  is_nothrow_move_assignable<nlohmann::json>::value
12933  )
12934 {
12935  j1.swap(j2);
12936 }
12937 
12939 template<>
12940 struct hash<nlohmann::json>
12941 {
12947  std::size_t operator()(const nlohmann::json& j) const
12948  {
12949  // a naive hashing via the string representation
12950  const auto& h = hash<nlohmann::json::string_t>();
12951  return h(j.dump());
12952  }
12953 };
12954 } // namespace std
12955 
12969 inline nlohmann::json operator "" _json(const char* s, std::size_t n)
12970 {
12971  return nlohmann::json::parse(s, s + n);
12972 }
12973 
12987 inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
12988 {
12989  return nlohmann::json::json_pointer(std::string(s, n));
12990 }
12991 
12992 // restore GCC/clang diagnostic settings
12993 #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
12994  #pragma GCC diagnostic pop
12995 #endif
12996 
12997 // clean up
12998 #undef JSON_CATCH
12999 #undef JSON_DEPRECATED
13000 #undef JSON_THROW
13001 #undef JSON_TRY
13002 
13003 #endif
ArrayType< basic_json, AllocatorType< basic_json > > array_t
a type for an array
Definition: json.hpp:1328
the parser read ] and finished processing a JSON array
reference operator+=(const basic_json &val)
add an object to an array
Definition: json.hpp:5318
basic_json(InputIT first, InputIT last)
construct a JSON container given an iterator range
Definition: json.hpp:2276
const_reference operator[](const typename object_t::key_type &key) const
read-only access specified object element
Definition: json.hpp:3847
iter_impl< const basic_json > const_iterator
a const iterator for a basic_json container
Definition: json.hpp:1090
Definition: json.hpp:227
static void construct(BasicJsonType &j, const CompatibleArrayType &arr)
Definition: json.hpp:327
json_reverse_iterator operator++(int)
post-increment (it++)
Definition: json.hpp:9471
void emplace_back(Args &&... args)
add an object to an array
Definition: json.hpp:5444
Definition: json.hpp:856
size_type max_size() const noexcept
returns the maximum possible number of elements
Definition: json.hpp:5129
friend bool operator<(const_reference lhs, const_reference rhs) noexcept
comparison: less than
Definition: json.hpp:6046
complex operator+(complex a, complex b)
Definition: complex.h:51
basic_json(basic_json &&other) noexcept
move constructor
Definition: json.hpp:2505
#define JSON_CATCH(exception)
Definition: json.hpp:100
NumberFloatType number_float_t
a type for a number (floating-point)
Definition: json.hpp:1618
strtonum(const char *start, const char *end)
Definition: json.hpp:11103
iter_impl operator--(int)
post-decrement (it–)
Definition: json.hpp:9135
difference_type operator-(const iter_impl &other) const
return difference
Definition: json.hpp:9342
friend bool operator==(json_pointer const &lhs, json_pointer const &rhs) noexcept
Definition: json.hpp:12228
number value (unsigned integer)
static constexpr auto value
Definition: json.hpp:464
json_reverse_iterator(const base_iterator &it) noexcept
create reverse iterator from base class
Definition: json.hpp:9466
static auto constexpr value
Definition: json.hpp:423
iter_impl operator+(difference_type i)
add to iterator
Definition: json.hpp:9320
static basic_json parse(std::istream &&i, const parser_callback_t cb=nullptr)
deserialize from stream
Definition: json.hpp:6361
IteratorType erase(IteratorType pos)
remove element given an iterator
Definition: json.hpp:4301
static void construct(BasicJsonType &j, typename BasicJsonType::number_float_t val) noexcept
Definition: json.hpp:272
void operator()(const BasicJsonType &j, T &val) const noexcept(noexcept(std::declval< from_json_fn >().call(j, val, priority_tag< 1 > {})))
Definition: json.hpp:876
const_reference operator[](const json_pointer &ptr) const
access specified element via JSON Pointer
Definition: json.hpp:12311
basic_json(CompatibleType &&val) noexcept(noexcept(JSONSerializer< U >::to_json(std::declval< basic_json_t & >(), std::forward< CompatibleType >(val))))
create a JSON value
Definition: json.hpp:2006
typename std::remove_cv< typename std::remove_reference< T >::type >::type uncvref_t
Definition: json.hpp:205
friend bool operator!=(json_pointer const &lhs, json_pointer const &rhs) noexcept
Definition: json.hpp:12234
NumberUnsignedType number_unsigned_t
a type for a number (unsigned)
Definition: json.hpp:1550
constexpr value_t type() const noexcept
return the type of the JSON value (explicit)
Definition: json.hpp:2681
static basic_json parse(std::istream &i, const parser_callback_t cb=nullptr)
deserialize from stream
Definition: json.hpp:6352
std::string to_string() const noexcept
return a string representation of the JSON pointer
Definition: json.hpp:11693
NumberIntegerType number_integer_t
a type for a number (integer)
Definition: json.hpp:1479
reference operator[](const typename object_t::key_type &key)
access specified object element
Definition: json.hpp:3798
constexpr bool is_primitive() const noexcept
return whether type is primitive
Definition: json.hpp:2711
a class to store JSON values
Definition: json.hpp:1039
typename std::allocator_traits< allocator_type >::pointer pointer
the type of an element pointer
Definition: json.hpp:1083
void from_json_array_impl(const BasicJsonType &j, CompatibleArrayType &arr, priority_tag< 0 >)
Definition: json.hpp:715
typename std::conditional< std::is_const< U >::value, typename basic_json::const_reference, typename basic_json::reference >::type reference
defines a reference to the type iterated over (value_type)
Definition: json.hpp:8859
reference at(const json_pointer &ptr)
access specified element via JSON Pointer
Definition: json.hpp:12336
iterator insert(const_iterator pos, basic_json &&val)
inserts element
Definition: json.hpp:5564
size_type count(typename object_t::key_type key) const
returns the number of occurrences of a key in a JSON object
Definition: json.hpp:4630
default JSONSerializer template argument
Definition: json.hpp:911
reference operator *() const
return a reference to the value pointed to by the iterator
Definition: json.hpp:9019
typename basic_json::difference_type difference_type
a type to represent differences between iterators
Definition: json.hpp:8851
constexpr bool is_structured() const noexcept
return whether type is structured
Definition: json.hpp:2738
Definition: json.hpp:235
friend std::ostream & operator<<(std::ostream &o, const basic_json &j)
serialize to stream
Definition: json.hpp:6222
static allocator_type get_allocator()
returns the allocator associated with the container
Definition: json.hpp:1102
StringType string_t
a type for a string
Definition: json.hpp:1381
void swap(nlohmann::json &j1, nlohmann::json &j2) noexcept(is_nothrow_move_constructible< nlohmann::json >::value and is_nothrow_move_assignable< nlohmann::json >::value)
exchanges the values of two JSON objects
Definition: json.hpp:12929
iterator end() noexcept
returns an iterator to one past the last element
Definition: json.hpp:4741
basic_json(size_type cnt, const basic_json &val)
construct an array with count copies of given value
Definition: json.hpp:2229
static iteration_proxy< iterator > iterator_wrapper(reference cont)
wrapper to access iterator member functions in range-based for
Definition: json.hpp:4935
reference operator[](T *(&key)[n])
access specified object element
Definition: json.hpp:3887
basic_json flatten() const
return flattened JSON value
Definition: json.hpp:12388
Definition: json.hpp:12921
iterator begin() noexcept
returns an iterator to the first element
Definition: json.hpp:4670
iter_impl & operator--()
pre-decrement (–it)
Definition: json.hpp:9146
static void construct(BasicJsonType &j, const typename BasicJsonType::string_t &s)
Definition: json.hpp:260
iter_impl()=default
default constructor
std::bidirectional_iterator_tag iterator_category
the category of the iterator
Definition: json.hpp:8861
std::ptrdiff_t difference_type
a type to represent differences between iterators
Definition: json.hpp:1075
reference operator+=(const typename object_t::value_type &val)
add an object to an object
Definition: json.hpp:5368
iterator insert(const_iterator pos, const_iterator first, const_iterator last)
inserts elements
Definition: json.hpp:5643
reference value() const
return the value of an iterator
Definition: json.hpp:9422
ValueType value(const typename object_t::key_type &key, ValueType default_value) const
access specified object element with default value
Definition: json.hpp:4067
friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
comparison: not equal
Definition: json.hpp:6017
const_iterator find(typename object_t::key_type key) const
find an element in a JSON object
Definition: json.hpp:4597
const_reverse_iterator rbegin() const noexcept
returns a const reverse iterator to the last element
Definition: json.hpp:4819
static iteration_proxy< const_iterator > iterator_wrapper(const_reference cont)
wrapper to access iterator member functions in range-based for
Definition: json.hpp:4943
static basic_json from_cbor(const std::vector< uint8_t > &v, const size_t start_index=0)
create a JSON value from a byte vector in CBOR format
Definition: json.hpp:8037
ValueType get() const noexcept(noexcept(JSONSerializer< ValueTypeCV >::from_json(std::declval< const basic_json_t & >())))
get a value (explicit); special case
Definition: json.hpp:3278
static basic_json parse(const CharT s, const parser_callback_t cb=nullptr)
deserialize from string literal
Definition: json.hpp:6322
friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
comparison: equal
Definition: json.hpp:5974
void get_arithmetic_value(const BasicJsonType &j, ArithmeticType &val)
Definition: json.hpp:604
const value_type & const_reference
the type of an element const reference
Definition: json.hpp:1072
constexpr bool is_object() const noexcept
return whether value is an object
Definition: json.hpp:2919
std::pair< iterator, bool > emplace(Args &&... args)
add an object to an object if key does not exist
Definition: json.hpp:5492
static void construct(BasicJsonType &j, typename BasicJsonType::number_unsigned_t val) noexcept
Definition: json.hpp:292
array (ordered collection of values)
json_reverse_iterator operator+(difference_type i) const
add to iterator
Definition: json.hpp:9504
constexpr const PointerType get() const noexcept
get a pointer value (explicit)
Definition: json.hpp:3327
Definition: json.hpp:474
typename std::conditional< std::is_const< U >::value, typename basic_json::const_pointer, typename basic_json::pointer >::type pointer
defines a pointer to the type iterated over (value_type)
Definition: json.hpp:8855
json_reverse_iterator & operator++()
pre-increment (++it)
Definition: json.hpp:9477
iter_impl(pointer object) noexcept
constructor for a given JSON instance
Definition: json.hpp:8872
complex operator *(complex a, complex b)
Definition: complex.h:75
void to_json(BasicJsonType &j, T b) noexcept
Definition: json.hpp:528
static void to_json(BasicJsonType &j, ValueType &&val) noexcept(noexcept(::nlohmann::to_json(j, std::forward< ValueType >(val))))
convert any value type to a JSON value
Definition: json.hpp:939
const_reference operator[](T *key) const
read-only access specified object element
Definition: json.hpp:4005
reference & operator=(basic_json other) noexcept(std::is_nothrow_move_constructible< value_t >::value and std::is_nothrow_move_assignable< value_t >::value and std::is_nothrow_move_constructible< json_value >::value and std::is_nothrow_move_assignable< json_value >::value)
copy assignment
Definition: json.hpp:2542
typename Base::reference reference
the reference type for the pointed-to element
Definition: json.hpp:9458
static basic_json parse(const ContiguousContainer &c, const parser_callback_t cb=nullptr)
deserialize from a container with contiguous storage
Definition: json.hpp:6484
NLOHMANN_JSON_HAS_HELPER(mapped_type)
constexpr bool is_null() const noexcept
return whether value is null
Definition: json.hpp:2760
constexpr bool is_number_float() const noexcept
return whether value is a floating-point number
Definition: json.hpp:2897
Definition: json.hpp:234
bool operator!=(const iter_impl &other) const
comparison: not equal
Definition: json.hpp:9211
JSONSerializer< T, SFINAE > json_serializer
Definition: json.hpp:1055
ValueType get() const noexcept(noexcept(JSONSerializer< ValueType >::from_json(std::declval< const basic_json_t & >(), std::declval< ValueType & >())))
get a value (explicit)
Definition: json.hpp:3225
discarded by the the parser callback function
reference at(size_type idx)
access specified array element with bounds checking
Definition: json.hpp:3531
basic_json(std::nullptr_t=nullptr) noexcept
create a null object
Definition: json.hpp:1940
iter_impl & operator-=(difference_type i)
subtract from iterator
Definition: json.hpp:9311
basic_json get() const
get special-case overload
Definition: json.hpp:3173
const_reference at(const typename object_t::key_type &key) const
access specified object element with bounds checking
Definition: json.hpp:3668
size_type erase(const typename object_t::key_type &key)
remove element from a JSON object given a key
Definition: json.hpp:4496
basic_json(const basic_json &other)
copy constructor
Definition: json.hpp:2428
static constexpr bool value
Definition: json.hpp:484
ValueType value(const json_pointer &ptr, ValueType default_value) const
access specified object element via JSON Pointer with default value
Definition: json.hpp:4139
void push_back(std::initializer_list< basic_json > init)
add an object to an object
Definition: json.hpp:5399
complex operator-(complex a, complex b)
Definition: complex.h:63
static void construct(BasicJsonType &j, const typename BasicJsonType::object_t &obj)
Definition: json.hpp:341
void clear() noexcept
clears the contents
Definition: json.hpp:5185
iterator insert(const_iterator pos, size_type cnt, const basic_json &val)
inserts elements
Definition: json.hpp:5593
~basic_json()
destructor
Definition: json.hpp:2575
std::string type_name() const
return the type as string
Definition: json.hpp:8065
constexpr bool is_number() const noexcept
return whether value is a number
Definition: json.hpp:2812
static basic_json diff(const basic_json &source, const basic_json &target, const std::string &path="")
creates a diff as a JSON patch
Definition: json.hpp:12765
reference operator[](T *key)
access specified object element
Definition: json.hpp:3955
#define JSON_THROW(exception)
Definition: json.hpp:98
reference operator[](const json_pointer &ptr)
access specified element via JSON Pointer
Definition: json.hpp:12284
json_reverse_iterator(const typename base_iterator::iterator_type &it) noexcept
create reverse iterator from iterator
Definition: json.hpp:9461
static void construct(BasicJsonType &j, const typename BasicJsonType::array_t &arr)
Definition: json.hpp:316
reference at(const typename object_t::key_type &key)
access specified object element with bounds checking
Definition: json.hpp:3621
json_reverse_iterator & operator+=(difference_type i)
add to iterator
Definition: json.hpp:9497
json_reverse_iterator operator-(difference_type i) const
subtract from iterator
Definition: json.hpp:9512
#define JSON_DEPRECATED
Definition: json.hpp:89
parse string into a built-in arithmetic type as if the current locale is POSIX.
Definition: json.hpp:11100
size_type size() const noexcept
returns the number of elements
Definition: json.hpp:5063
constexpr const PointerType get_ptr() const noexcept
get a pointer value (implicit)
Definition: json.hpp:3389
static std::vector< uint8_t > to_cbor(const basic_json &j)
create a MessagePack serialization of a given JSON value
Definition: json.hpp:8004
value_type & reference
the type of an element reference
Definition: json.hpp:1070
reference back()
access the last element
Definition: json.hpp:4235
static void construct(BasicJsonType &j, typename BasicJsonType::number_integer_t val) noexcept
Definition: json.hpp:304
bool operator<(const iter_impl &other) const
comparison: smaller
Definition: json.hpp:9220
friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
comparison: equal
Definition: json.hpp:5963
iter_impl(const iter_impl &other) noexcept
copy constructor
Definition: json.hpp:8925
iter_impl operator++(int)
post-increment (it++)
Definition: json.hpp:9092
reference operator[](difference_type n) const
access to successor
Definition: json.hpp:9526
const_iterator begin() const noexcept
returns a const iterator to the first element
Definition: json.hpp:4680
reverse_iterator rend() noexcept
returns an iterator to the reverse-end
Definition: json.hpp:4848
constexpr bool is_boolean() const noexcept
return whether value is a boolean
Definition: json.hpp:2782
bool operator<(const value_t lhs, const value_t rhs) noexcept
comparison operator for JSON types
Definition: json.hpp:171
namespace for Niels Lohmann
Definition: json.hpp:108
parse_event_t
JSON callback events.
Definition: json.hpp:1807
IteratorType erase(IteratorType first, IteratorType last)
remove elements given an iterator range
Definition: json.hpp:4408
object (unordered set of name/value pairs)
constexpr bool is_string() const noexcept
return whether value is a string
Definition: json.hpp:2963
Definition: json.hpp:830
ReferenceType get_ref()
get a reference value (implicit)
Definition: json.hpp:3438
static constexpr bool value
Definition: json.hpp:502
Definition: json.hpp:885
typename std::enable_if< B, T >::type enable_if_t
Definition: json.hpp:202
the parser read } and finished processing a JSON object
std::reverse_iterator< Base > base_iterator
shortcut to the reverse iterator adaptor
Definition: json.hpp:9456
static basic_json from_msgpack(const std::vector< uint8_t > &v, const size_t start_index=0)
create a JSON value from a byte vector in MessagePack format
Definition: json.hpp:7974
static basic_json array(std::initializer_list< basic_json > init=std::initializer_list< basic_json >())
explicitly create an array from an initializer list
Definition: json.hpp:2165
PointerType get_ptr() noexcept
get a pointer value (implicit)
Definition: json.hpp:3361
value_t
the JSON type enumeration
Definition: json.hpp:149
friend std::istream & operator>>(std::istream &i, basic_json &j)
deserialize from stream
Definition: json.hpp:6524
json_reverse_iterator & operator--()
pre-decrement (–it)
Definition: json.hpp:9490
friend bool operator==(const_reference lhs, const_reference rhs) noexcept
comparison: equal
Definition: json.hpp:5882
JSON Pointer.
Definition: json.hpp:11646
friend std::ostream & operator>>(const basic_json &j, std::ostream &o)
serialize to stream
Definition: json.hpp:6241
friend std::istream & operator<<(basic_json &j, std::istream &i)
deserialize from stream
Definition: json.hpp:6514
string_t value(const json_pointer &ptr, const char *default_value) const
overload for a default value of type const char*
Definition: json.hpp:4162
void push_back(const basic_json &val)
add an object to an array
Definition: json.hpp:5294
bool operator<=(const iter_impl &other) const
comparison: less than or equal
Definition: json.hpp:9253
static constexpr T value
Definition: json.hpp:887
iter_impl & operator=(iter_impl other) noexcept(std::is_nothrow_move_constructible< pointer >::value and std::is_nothrow_move_assignable< pointer >::value and std::is_nothrow_move_constructible< internal_iterator >::value and std::is_nothrow_move_assignable< internal_iterator >::value)
copy assignment
Definition: json.hpp:8934
std::size_t operator()(const nlohmann::json &j) const
return a hash value for a JSON object
Definition: json.hpp:12947
#define JSON_TRY
Definition: json.hpp:99
object_t::key_type key() const
return the key of an object iterator
Definition: json.hpp:9532
const_reference operator[](T *(&key)[n]) const
read-only access specified object element
Definition: json.hpp:3922
const_reference back() const
access the last element
Definition: json.hpp:4245
json_reverse_iterator< typename basic_json::const_iterator > const_reverse_iterator
a const reverse iterator for a basic_json container
Definition: json.hpp:1094
constexpr bool is_discarded() const noexcept
return whether value is discarded
Definition: json.hpp:2990
JSON_DEPRECATED basic_json(std::istream &i, const parser_callback_t cb=nullptr)
construct a JSON value given an input stream
Definition: json.hpp:2396
std::numeric_limits< CompatibleNumberIntegerType > CompatibleLimits
Definition: json.hpp:452
BooleanType boolean_t
a type for a boolean
Definition: json.hpp:1407
friend bool operator>(const_reference lhs, const_reference rhs) noexcept
comparison: greater than
Definition: json.hpp:6163
bool operator>=(const iter_impl &other) const
comparison: greater than or equal
Definition: json.hpp:9271
void from_json(const BasicJsonType &j, ArithmeticType &val)
Definition: json.hpp:799
bool operator==(const iter_impl &other) const
comparison: equal
Definition: json.hpp:9178
static basic_json parse(T(&array)[N], const parser_callback_t cb=nullptr)
deserialize from an array
Definition: json.hpp:6284
reference operator+=(basic_json &&val)
add an object to an array
Definition: json.hpp:5284
bool operator>(const iter_impl &other) const
comparison: greater than
Definition: json.hpp:9262
basic_json(std::initializer_list< basic_json > init, bool type_deduction=true, value_t manual_type=value_t::array)
create a container (array or object) from an initializer list
Definition: json.hpp:2082
constexpr bool is_number_integer() const noexcept
return whether value is an integer number
Definition: json.hpp:2841
Definition: json.hpp:231
the parser finished reading a JSON value
const_iterator cbegin() const noexcept
returns a const iterator to the first element
Definition: json.hpp:4710
void swap(array_t &other)
exchanges the values
Definition: json.hpp:5770
const_reference at(size_type idx) const
access specified array element with bounds checking
Definition: json.hpp:3574
typename std::allocator_traits< allocator_type >::const_pointer const_pointer
the type of an element const pointer
Definition: json.hpp:1085
basic_json(const value_t value_type)
create an empty value with a given type
Definition: json.hpp:1916
static constexpr bool value
Definition: json.hpp:517
static auto constexpr value
Definition: json.hpp:433
reference operator[](difference_type n) const
access to successor
Definition: json.hpp:9369
static basic_json object(std::initializer_list< basic_json > init=std::initializer_list< basic_json >())
explicitly create an object from an initializer list
Definition: json.hpp:2205
Definition: json.hpp:508
constexpr bool is_number_unsigned() const noexcept
return whether value is an unsigned integer number
Definition: json.hpp:2869
ObjectType< StringType, basic_json, std::less< StringType >, AllocatorType< std::pair< const StringType, basic_json > >> object_t
a type for an object
Definition: json.hpp:1282
void swap(string_t &other)
exchanges the values
Definition: json.hpp:5836
typename basic_json::value_type value_type
the type of the values when the iterator is dereferenced
Definition: json.hpp:8849
iterator insert(const_iterator pos, const basic_json &val)
inserts element
Definition: json.hpp:5540
constexpr bool is_array() const noexcept
return whether value is an array
Definition: json.hpp:2941
const_iterator end() const noexcept
returns a const iterator to one past the last element
Definition: json.hpp:4751
const_reverse_iterator crbegin() const noexcept
returns a const reverse iterator to the last element
Definition: json.hpp:4885
static auto constexpr value
Definition: json.hpp:413
json_reverse_iterator< typename basic_json::iterator > reverse_iterator
a reverse iterator for a basic_json container
Definition: json.hpp:1092
detail::value_t value_t
Definition: json.hpp:1049
std::integral_constant< bool, std::is_convertible< T, int >::value and std::is_enum< T >::value > is_unscoped_enum
Definition: json.hpp:211
the parser read { and started to process a JSON object
static void construct(BasicJsonType &j, const CompatibleObjectType &obj)
Definition: json.hpp:352
friend class basic_json
allow basic_json to access private members
Definition: json.hpp:11649
static basic_json parse(IteratorType first, IteratorType last, const parser_callback_t cb=nullptr)
deserialize from an iterator range with contiguous storage
Definition: json.hpp:6412
reference operator[](size_type idx)
access specified array element
Definition: json.hpp:3714
string_t value(const typename object_t::key_type &key, const char *default_value) const
overload for a default value of type const char*
Definition: json.hpp:4091
void push_back(basic_json &&val)
add an object to an array
Definition: json.hpp:5258
reference front()
access the first element
Definition: json.hpp:4192
Definition: json.hpp:226
reverse_iterator rbegin() noexcept
returns an iterator to the reverse-beginning
Definition: json.hpp:4811
ReferenceType get_ref() const
get a reference value (implicit)
Definition: json.hpp:3451
std::size_t size_type
a type to represent container sizes
Definition: json.hpp:1077
reference value() const
return the value of an iterator
Definition: json.hpp:9539
const_reverse_iterator crend() const noexcept
returns a const reverse iterator to one before the first
Definition: json.hpp:4914
json_reverse_iterator operator--(int)
post-decrement (it–)
Definition: json.hpp:9484
iter_impl & operator+=(difference_type i)
add to iterator
Definition: json.hpp:9280
the parser read a key of a value in an object
basic_json patch(const basic_json &json_patch) const
applies a JSON patch
Definition: json.hpp:12472
const_reference operator[](size_type idx) const
access specified array element
Definition: json.hpp:3760
iter_impl operator-(difference_type i)
subtract from iterator
Definition: json.hpp:9331
void operator()(BasicJsonType &j, T &&val) const noexcept(noexcept(std::declval< to_json_fn >().call(j, std::forward< T >(val), priority_tag< 1 > {})))
Definition: json.hpp:849
iter_impl & operator++()
pre-increment (++it)
Definition: json.hpp:9103
basic_json<> json
default JSON class
Definition: json.hpp:12912
friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
comparison: not equal
Definition: json.hpp:6006
pointer operator->() const
dereference the iterator
Definition: json.hpp:9058
json_pointer(const std::string &s="")
create JSON pointer
Definition: json.hpp:11674
PointerType get() noexcept
get a pointer value (explicit)
Definition: json.hpp:3315
void swap(object_t &other)
exchanges the values
Definition: json.hpp:5803
static std::vector< uint8_t > to_msgpack(const basic_json &j)
create a MessagePack serialization of a given JSON value
Definition: json.hpp:7941
a template for a reverse iterator class
Definition: json.hpp:1052
void from_json(const BasicJsonType &j, typename BasicJsonType::boolean_t &b)
Definition: json.hpp:635
const_iterator cend() const noexcept
returns a const iterator to one past the last element
Definition: json.hpp:4781
basic_json value_type
the type of elements in a basic_json container
Definition: json.hpp:1067
void push_back(const typename object_t::value_type &val)
add an object to an object
Definition: json.hpp:5344
bool to(T &val) const
Definition: json.hpp:11114
iterator find(typename object_t::key_type key)
find an element in a JSON object
Definition: json.hpp:4581
basic_json unflatten() const
unflatten a previously flattened JSON value
Definition: json.hpp:12422
friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
comparison: less than or equal
Definition: json.hpp:6141
void erase(const size_type idx)
remove element from a JSON array given an index
Definition: json.hpp:4531
number value (signed integer)
friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
comparison: greater than or equal
Definition: json.hpp:6185
friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
comparison: not equal
Definition: json.hpp:5995
static void construct(BasicJsonType &j, typename BasicJsonType::boolean_t b) noexcept
Definition: json.hpp:248
reference operator+=(std::initializer_list< basic_json > init)
add an object to an object
Definition: json.hpp:5416
void to_json(BasicJsonType &j, const CompatibleObjectType &arr)
Definition: json.hpp:588
std::function< bool(int depth, parse_event_t event, basic_json &parsed)> parser_callback_t
per-element parser callback type
Definition: json.hpp:1877
iterator insert(const_iterator pos, std::initializer_list< basic_json > ilist)
inserts elements
Definition: json.hpp:5701
object_t::key_type key() const
return the key of an object iterator
Definition: json.hpp:9406
AllocatorType< basic_json > allocator_type
the allocator type
Definition: json.hpp:1080
void swap(reference other) noexcept(std::is_nothrow_move_constructible< value_t >::value and std::is_nothrow_move_assignable< value_t >::value and std::is_nothrow_move_constructible< json_value >::value and std::is_nothrow_move_assignable< json_value >::value)
exchanges the values
Definition: json.hpp:5738
const_reference front() const
access the first element
Definition: json.hpp:4200
a template for a random access iterator for the basic_json class
Definition: json.hpp:1051
the parser read [ and started to process a JSON array
difference_type operator-(const json_reverse_iterator &other) const
return difference
Definition: json.hpp:9520
number value (floating-point)
string_t dump(const int indent=-1) const
serialization
Definition: json.hpp:2647
const_reference at(const json_pointer &ptr) const
access specified element via JSON Pointer
Definition: json.hpp:12361
const_reverse_iterator rend() const noexcept
returns a const reverse iterator to one before the first
Definition: json.hpp:4856
bool empty() const noexcept
checks whether the container is empty
Definition: json.hpp:4995
static basic_json meta()
returns version information on the library
Definition: json.hpp:1130
static void from_json(BasicJsonType &&j, ValueType &val) noexcept(noexcept(::nlohmann::from_json(std::forward< BasicJsonType >(j), val)))
convert a JSON value to any value type
Definition: json.hpp:923