GLAC  1.0
Data Structures
Here are the data structures with brief descriptions:
[detail level 123]
 NIO
 CFieldIO
 NnlohmannNamespace for Niels Lohmann
 NdetailUnnamed namespace with internal helper functions
 Cconjunction
 Cconjunction< B1 >
 Cconjunction< B1, Bn... >
 Cexternal_constructor
 Cexternal_constructor< value_t::array >
 Cexternal_constructor< value_t::boolean >
 Cexternal_constructor< value_t::number_float >
 Cexternal_constructor< value_t::number_integer >
 Cexternal_constructor< value_t::number_unsigned >
 Cexternal_constructor< value_t::object >
 Cexternal_constructor< value_t::string >
 Cfrom_json_fn
 Chas_from_json
 Chas_non_default_from_json
 Chas_to_json
 Cis_basic_json_nested_type
 Cis_compatible_array_type
 Cis_compatible_integer_type
 Cis_compatible_integer_type_impl
 Cis_compatible_integer_type_impl< true, RealIntegerType, CompatibleNumberIntegerType >
 Cis_compatible_object_type
 Cis_compatible_object_type_impl
 Cis_compatible_object_type_impl< true, RealType, CompatibleObjectType >
 Cnegation
 Cpriority_tag
 Cpriority_tag< 0 >
 Cstatic_const
 Cto_json_fn
 Cadl_serializerDefault JSONSerializer template argument
 Cbasic_jsonClass to store JSON values
 Citer_implTemplate for a random access iterator for the basic_json class
 Cjson_pointerJSON Pointer
 Cjson_reverse_iteratorTemplate for a reverse iterator class
 NParallelParallel contains all of the relevant methods for communicating between the lattices
 CCommunicator
 CIndex
 CNeighbours
 CParallelParameters
 Nstd
 Chash< nlohmann::json >Hash value for JSON objects
 CActionThe Action class
 CCommunicatorCommunicator holds methods for performing single link communication, which is need in the Action
 CcomplexA complex number class, consisting of t
 CCorrelatorBase class for observables
 CEnergyDensitySolely calculates the energy density as given by,

\[ E = -\frac{1}{64|\Lambda|} \sum_{n\in\Lambda}\sum_{\mu<\nu} \big(\tilde{C}_{\mu\nu}(n)\big)^2. \]

The \(F_{\mu\nu}\) is the clover

 CExpLuscherUses method for exponentiating SU3 matrix found in Appendix A in https://arxiv.org/abs/hep-lat/0409106
 CFieldIOClass for reading and writing lattice to file
 CFlowClass for applying gradient flow on lattice
 CIndexClass for contigious memory accessing
 CLatticeA method for holding a lattice of type T
 CLatticeActionChargeDensityMethod for calculating and storing the topological charge and energy density at every point of the lattice
 CLuscherActionAn implementation of the Wilson gauge action,
 CMasterSamplerObservable for calculating the plaquette, topological charge and energy
 CMasterSamplerTopcXYZObservable for calculating the plaquette, energy and euclidean time topological charge
 CNeighbourList
 CNeighbourListsClass for storing the nearest closest neighbours of a processors
 CNeighboursClass for setting up the NeighbourList and stores them
 CObservableStorerA class for storing the observable data
 CParallelParametersParallelParameters holds two groups and one communicator
 CParametersParameter holding class
 CPerformanceTests
 CPlaquetteObservable for calculating the plaquette
 CSU2Class for holding \(\mathrm{SU}(2)\) matrices
 CSU3Class for holding \(\mathrm{SU}(3)\) matrices
 CSU3ExpSU3 matrix exponentiation method that uses the method from https://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.054501
 CSU3MatrixGeneratorClass for generating random SU3 matrices
 CSuperSamplerObservable for calculating the Weinberg operator, plaquette, energy and euclidean time topological charge
 CSysPrintClass for printing run information
 CSystemSystem is the class that ties the program together. It initiates and sets up the sub-lattices, and performs holds the Metropolis algorithm
 CTaylor2ExpTaylor expansion of second order
 CTaylor4ExpTaylor expansion of second order
 CTaylorExpUses a general Taylor polynomial to approximate the exponentiation of a SU(3) matrix
 CTestSuiteRuns unit tests on the methods of GLAC
 CTopologicalChargeSolely calculates the topological charge as given by,

\[ q(n_e) = \frac{1}{32\pi^2} \sum_{n \in N^3} \epsilon_{\mu\nu\rho\sigma} \mathrm{tr}\big[F_{\mu\nu}(n)F_{\rho\sigma}(n)\big], \]

where \(n_e\) is the position in the lattice in Euclidean time. \(F_{\nu\mu}\) is the clover

 CWilsonGaugeActionAn implementation of the Wilson gauge action,